The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana

2019 ◽  
Vol 38 (8) ◽  
pp. 869-882 ◽  
Author(s):  
Lianfu Tian ◽  
Zijing Xie ◽  
Changqing Lu ◽  
Xiaohua Hao ◽  
Sha Wu ◽  
...  
Life ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 15
Author(s):  
Novikova ◽  
Stepanchenko ◽  
Zorina ◽  
Nosov ◽  
Rakitin ◽  
...  

Recent studies indicate direct links between molecular cell cycle and cell differentiation machineries. Ethylene and abscisic acid (ABA) are known to affect cell division and differentiation, but the mechanisms of such effects are poorly understood. As ethylene and ABA signaling routes may interact, we examined their involvement in cell division and differentiation in cell tissue cultures derived from several Arabidopsis thaliana plants: wild type (Col-0), and ethylene-insensitive mutants etr1-1, ctr1-1, and ein2-1. We designed an experimental setup to analyze the growth-related parameters and molecular mechanisms in proliferating cells upon short exposure to ABA. Here, we provide evidence for the ethylene–ABA signaling pathways’ interaction in the regulation of cell division and differentiation as follows: (1) when the ethylene signal transduction pathway is functionally active (Col-0), the cells actively proliferate, and exogenous ABA performs its function as an inhibitor of DNA synthesis and division; (2) if the ethylene signal is not perceived (etr1-1), then, in addition to cell differentiation (tracheary elements formation), cell death can occur. The addition of exogenous ABA can rescue the cells via increasing proliferation; (3) if the ethylene signal is perceived, but not transduced (ein2-1), then cell differentiation takes place—the latter is enhanced by exogenous ABA while cell proliferation is reduced; (4) when the signal transduction pathway is constitutively active, the cells begin to exit the cell cycle and proceed to endo-reduplication (ctr1-1). In this case, the addition of exogenous ABA promotes reactivation of cell division.


2007 ◽  
Vol 29 (3) ◽  
pp. 273-281 ◽  
Author(s):  
André M. Almeida ◽  
Enrique Villalobos ◽  
Susana S. Araújo ◽  
Luis A. Cardoso ◽  
Dulce M. Santos ◽  
...  

2009 ◽  
Vol 51 (2) ◽  
pp. 239-251 ◽  
Author(s):  
Natsuko Kinoshita ◽  
Alexandre Berr ◽  
Christophe Belin ◽  
Richard Chappuis ◽  
Naoko K. Nishizawa ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Izabela Wawer ◽  
Anna Golisz ◽  
Aleksandra Sulkowska ◽  
Dorota Kawa ◽  
Anna Kulik ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3577 ◽  
Author(s):  
Xu Wang ◽  
Zhazira Yesbergenova-Cuny ◽  
Catherine Biniek ◽  
Christophe Bailly ◽  
Hayat El-Maarouf-Bouteau ◽  
...  

Dormant Arabidopsis (Arabidopsis thaliana) seeds do not germinate easily at temperatures higher than 10–15 °C. Using mutants affected in ethylene signaling (etr1, ein2 and ein4) and in the N-end-rule pathway of the proteolysis (prt6 and ate1-ate2) we have investigated the effects of cold and ethylene on dormancy alleviation. Ethylene (10–100 ppm) and 2–4 days chilling (4 °C) strongly stimulate the germination of wild type (Col-0) seeds at 25 °C. Two to four days of chilling promote the germination at 25 °C of all the mutants suggesting that release of dormancy by cold did not require ethylene and did not require the N-end-rule pathway. One mutant (etr1) that did not respond to ethylene did not respond to GA3 either. Mutants affected in the N-end rule (prt6 and ate1-ate2) did not respond to ethylene indicating that also this pathway is required for dormancy alleviation by ethylene; they germinated after chilling and in the presence of GA3. Cold can activate the ethylene signaling pathway since it induced an accumulation of ETR1, EINI4, and EIN2 transcripts, the expression of which was not affected by ethylene and GA3. Both cold followed by 10 h at 25 °C and ethylene downregulated the expression of PRT6, ATE1, ATE2, and of ABI5 involved in ABA signaling as compared to dormant seeds incubated at 25 °C. In opposite, the expression of RGA, GAI, and RGL2 encoding three DELLAs was induced at 4 °C but downregulated in the presence of ethylene.


Sign in / Sign up

Export Citation Format

Share Document