Mean diffusivity, fractional anisotropy maps, and three-dimensional white-matter tractography by diffusion tensor imaging. Comparison between single-shot fast spin-echo and single-shot echo-planar sequences at 1.5 Tesla

2007 ◽  
Vol 18 (4) ◽  
pp. 830-834 ◽  
Author(s):  
Masaaki Hori ◽  
Keiichi Ishigame ◽  
Nobuyuki Shiraga ◽  
Hiroshi Kumagai ◽  
Shigeki Aoki ◽  
...  
2007 ◽  
Vol 25 (5) ◽  
pp. 665-670 ◽  
Author(s):  
Julio Carballido-Gamio ◽  
Duan Xu ◽  
David Newitt ◽  
Eric T. Han ◽  
Daniel B. Vigneron ◽  
...  

1998 ◽  
Vol 8 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Tomoaki Ichikawa ◽  
Hiroki Haradome ◽  
Hideto Hanaoka ◽  
Yosimori Kassai ◽  
Toshiaki Nitatori ◽  
...  

2004 ◽  
Vol 22 (6) ◽  
pp. 751-759 ◽  
Author(s):  
Duan Xu ◽  
Roland G Henry ◽  
Pratik Mukherjee ◽  
Lucas Carvajal ◽  
Steven P Miller ◽  
...  

2010 ◽  
Vol 112 (4) ◽  
pp. 814-823 ◽  
Author(s):  
Keith A. Cauley ◽  
Trevor Andrews ◽  
Jay V. Gonyea ◽  
Christopher G. Filippi

Object Cavernous malformations (CMs) can cause symptoms that appear out of proportion to the lesion size, leading one to hypothesize that they may have an effect on adjacent white matter that is not fully explained by local mass effect. The goal of this study was to investigate the diffusion tensor (DT) properties of CMs, the hemosiderin rim, and normal-appearing adjacent white matter. Methods Eighteen cavernous malformations were characterized using standard MR imaging sequences as well as 6-direction DT imaging with single-shot echo planar–gradient echo imaging at 3 tesla. Results Diffusion tensor imaging demonstrated that CMs have a characteristic signature on DT imaging, with low fractional anisotropy (FA) and high mean diffusivity centrally within the lesion. The hemosiderin rim had a high FA value relative to the central lesion or adjacent white matter. Tractography revealed that tracts neatly deviate around CMs. Tracts were typically seen to pass through the hemosiderin rim. Conclusions The hemosiderin rim of CMs was intimately associated with white matter tracts that were deviated by the central lesion. These findings are consistent with histopathological reports that the hemosiderin rim is composed of blood breakdown products deposited in viable white matter.


Sign in / Sign up

Export Citation Format

Share Document