Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography

2015 ◽  
Vol 26 (6) ◽  
pp. 1843-1851 ◽  
Author(s):  
Vladimir Ermolayev ◽  
Xose Luis Dean-Ben ◽  
Subhamoy Mandal ◽  
Vasilis Ntziachristos ◽  
Daniel Razansky
2020 ◽  
Vol 9 (3) ◽  
pp. 815 ◽  
Author(s):  
Guido Giacalone ◽  
Takumi Yamamoto ◽  
Florence Belva ◽  
Akitatsu Hayashi

Identification of lymphatics by Indocyanine Green (ICG) lymphography in patients with severe lymphedema is limited due to the overlying dermal backflow. Nor can the method detect deep and/or small vessels. Multispectral optoacoustic tomography (MSOT), a real-time three- dimensional (3D) imaging modality which allows exact spatial identification of absorbers in tissue such as blood and injected dyes can overcome these hurdles. However, MSOT with a handheld probe has not been performed yet in lymphedema patients. We conducted a pilot study in 11 patients with primary and secondary lymphedema to test whether lymphatic vessels could be detected with a handheld MSOT device. In eight patients, we could not only identify lymphatics and veins but also visualize their position and contractility. Furthermore, deep lymphatic vessels not traceable by ICG lymphography and lymphatics covered by severe dermal backflow, could be clearly identified by MSOT. In three patients, two of which had advanced stage lymphedema, only veins but no lymphatic vessels could be identified. We found that MSOT can identify and image lymphatics and veins in real-time and beyond the limits of near-infrared technology during a single bedside examination. Given its easy use and high accuracy, the handheld MSOT device is a promising tool in lymphatic surgery.


2015 ◽  
Vol 35 (4) ◽  
pp. 531-535 ◽  
Author(s):  
Sven Gottschalk ◽  
Thomas Felix Fehm ◽  
Xosé Luís Deán-Ben ◽  
Daniel Razansky

Current functional neuroimaging methods are not adequate for high-resolution whole-brain visualization of neural activity in real time. Here, we show imaging of fast hemodynamic changes in deep mouse brain using fully noninvasive acquisition of five-dimensional optoacoustic data from animals subjected to oxygenation stress. Multispectral video-rate acquisition of three-dimensional tomographic data enables simultaneous label-free assessment of multiple brain hemodynamic parameters, including blood oxygenation, total hemoglobin, cerebral blood volume, oxygenized and deoxygenized hemoglobin, in real time. The unprecedented results indicate that the proposed methodology may serve as a powerful complementary, and potentially superior, method for functional neuroimaging studies in rodents.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Sumin Chen ◽  
Xiya Du ◽  
Qingzi Chen ◽  
Shaoqi Chen

Objective. This prospective study aimed to investigate the use of real-time three-dimensional hysterosalpingo-contrast sonography (4D-HyCoSy), using contrast agent SonoVue, with B mode hysterosalpingo-contrast sonography (B mode-HyCoSy), to evaluate tubal patency and the wall of the Fallopian tubes in infertility patients. Method. In total, we recruited 739 women with fertility requirements from the First Affiliated Hospital of Shantou Medical College between January 2017 and July 2018. All cases received 4D-HyCoSy using contrast agent SonoVue, immediately followed by the B mode-HyCoSy. Of these patients, 145 showed pathological findings in the Fallopian tubes during HyCoSy; 34 of these (62 Fallopian tubes) were verified by laparoscopy and the dye test against routine reference standards. Sonographic findings, along with laparoscopic findings and dye test results, were used to compare the two techniques using the Cohen kappa coefficient. We also investigated the duration of examination and pain score. Results. Compared with laparoscopy and the dye test, the tubal occlusion diagnostic accordance rates for 4D-HyCoSy were 88.7% (32+23)/62, with a kappa coefficient of 0.769 and a 76.9% agreement rate. Distal occlusion diagnostic accordance rates for 4D-HyCoSy were 100% (8/8) with a k coefficient of 1.000 and a 100% agreement rate. Conclusions. The use of 4D-HyCoSy, with B mode-HyCoSy, for the diagnosis of tubal patency is safe, feasible, noninvasive, and highly accurate. B mode-HyCoSy allowed us to observe tubal walls in an intuitive manner.


2007 ◽  
Vol 99 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Attila Nemes ◽  
Marcel L. Geleijnse ◽  
Boudewijn J. Krenning ◽  
Osama I.I. Soliman ◽  
Ashraf M. Anwar ◽  
...  

Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


Sign in / Sign up

Export Citation Format

Share Document