scholarly journals Reliability of Synthetic Brain MRI for Assessment of Ischemic Stroke with Phantom Validation of a Relaxation Time Determination Method

2020 ◽  
Vol 9 (6) ◽  
pp. 1857
Author(s):  
Chia-Wei Li ◽  
Ai-Ling Hsu ◽  
Chi-Wen C. Huang ◽  
Shih-Hung Yang ◽  
Chien-Yuan Lin ◽  
...  

The reliability of relaxation time measures in synthetic magnetic resonance images (MRIs) of homemade phantoms were validated, and the diagnostic suitability of synthetic imaging was compared to that of conventional MRIs for detecting ischemic lesions. Phantoms filled with aqueous cupric-sulfate (CuSO4) were designed to mimic spin-lattice (T1) and spin-spin (T2) relaxation properties and were used to compare their accuracies and stabilities between synthetic and conventional scans of various brain tissues. To validate the accuracy of synthetic imaging in ischemic stroke diagnoses, the synthetic and clinical scans of 18 patients with ischemic stroke were compared, and the quantitative contrast-to-noise ratios (CNRs) were measured, using the Friedman test to determine significance in differences. Results using the phantoms showed no significant differences in the interday and intersession synthetic quantitative T1 and T2 values. However, between synthetic and referenced T1 and T2 values, differences were larger for longer relaxation times, showing that image intensities in synthetic scans are relatively inaccurate in the cerebrospinal fluid (CSF). Similarly, CNRs in CSF regions of stroke patients were significantly different on synthetic T2-weighted and T2-fluid-attenuated inversion recovery images. In contrast, differences in stroke lesions were insignificant between the two. Therefore, interday and intersession synthetic T1 and T2 values are highly reliable, and discrepancies in synthetic T1 and T2 relaxation times and image contrasts in CSF regions do not affect stroke lesion diagnoses. Additionally, quantitative relaxation times from synthetic images allow better estimations of ischemic stroke onset time, consequently increasing confidence in synthetic MRIs as diagnostic tools for ischemic stroke.

1987 ◽  
Vol 28 (3) ◽  
pp. 345-351 ◽  
Author(s):  
L. Kjær ◽  
C. Thomsen ◽  
O. Henriksen ◽  
P. Ring ◽  
M. Stubgaard ◽  
...  

Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency=64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded that proton T1 and T2 relaxation times covering the majority of the biologic range can be measured by MRI with an overall accuracy of 5 to 10 per cent. Quality control studies along the lines indicated in this study are recommended.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunxiang Zhang ◽  
Xin Zhao ◽  
Meiying Cheng ◽  
Kaiyu Wang ◽  
Xiaoan Zhang

Objectives: Synthetic MRI can obtain multiple parameters in one scan, including T1 and T2 relaxation time, proton density (PD), brain volume, etc. This study aimed to investigate the parameter values T1 and T2 relaxation time, PD, and volume characteristics of intraventricular hemorrhage (IVH) newborn brain, and the ability of synthetic MRI parameters T1 and T2 relaxation time and PD to diagnose IVH.Materials and methods: The study included 50 premature babies scanned with conventional and synthetic MRI. Premature infants were allocated to the case group (n = 15) and NON IVH (n = 35). The T1, T2, PD values, and brain volume were obtained by synthetic MRI. Then we assessed the impact of IVH on these parameters.Results: In the posterior limbs of the internal capsule (PLIC), genu of the corpus callosum (GCC), central white matter (CWM), frontal white matter (FWM), and cerebellum (each p < 0.05), the T1 and T2 relaxation times of the IVH group were significantly prolonged. There were significant differences also in PD. The brain volume in many parts were also significantly reduced, which was best illustrated in gray matter (GM), cerebrospinal fluid and intracranial volume, and brain parenchymal fraction (BPF) (each p < 0.001, t = −5.232 to 4.596). The differential diagnosis ability of these quantitative values was found to be excellent in PLIC, CWM, and cerebellum (AUC 0.700–0.837, p < 0.05).Conclusion: The quantitative parameters of synthetic MRI show well the brain tissue characteristic values and brain volume changes of IVH premature infants. T1 and T2 relaxation times and PD contribute to the diagnosis and evaluation of IVH.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4067
Author(s):  
Manabu Kinoshita ◽  
Masato Uchikoshi ◽  
Souichiro Tateishi ◽  
Shohei Miyazaki ◽  
Mio Sakai ◽  
...  

One of the most crucial yet challenging issues for glioma patient care is visualizing non-contrast-enhancing tumor regions. In this study, to test the hypothesis that quantitative magnetic resonance relaxometry reflects glioma tumor load within tissue and that it can be an imaging surrogate for visualizing non-contrast-enhancing tumors, we investigated the correlation between T1- and T2-weighted relaxation times, apparent diffusion coefficient (ADC) on magnetic resonance imaging, and 11C-methionine (MET) on positron emission tomography (PET). Moreover, we compared the T1- and T2-relaxation times and ADC with tumor cell density (TCD) findings obtained via stereotactic image-guided tissue sampling. Regions that presented a T1-relaxation time of >1850 ms but <3200 ms or a T2-relaxation time of >115 ms but <225 ms under 3 T indicated a high MET uptake. In addition, the stereotactic tissue sampling findings confirmed that the T1-relaxation time of 1850–3200 ms significantly indicated a higher TCD (p = 0.04). However, ADC was unable to show a significant correlation with MET uptake or with TCD. Finally, synthetically synthesized tumor load images from the T1- and T2-relaxation maps were able to visualize MET uptake presented on PET.


2021 ◽  
pp. 101836
Author(s):  
Kodama Saki ◽  
Hata Junichi ◽  
Kanawaku Yoshimasa ◽  
Nakagawa Hiroshi ◽  
Oshiro Hinako ◽  
...  

2020 ◽  
Author(s):  
Chih-Chien Tsai ◽  
Shu-Hang Ng ◽  
Yao-Liang Chen ◽  
Yu-Hsiang Juan ◽  
Chao-Hung Wang ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. SA77-SA89 ◽  
Author(s):  
John Doveton ◽  
Lynn Watney

The T2 relaxation times recorded by nuclear magnetic resonance (NMR) logging are measures of the ratio of the internal surface area to volume of the formation pore system. Although standard porosity logs are restricted to estimating the volume, the NMR log partitions the pore space as a spectrum of pore sizes. These logs have great potential to elucidate carbonate sequences, which can have single, double, or triple porosity systems and whose pores have a wide variety of sizes and shapes. Continuous coring and NMR logging was made of the Cambro-Ordovician Arbuckle saline aquifer in a proposed CO2 injection well in southern Kansas. The large data set gave a rare opportunity to compare the core textural descriptions to NMR T2 relaxation time signatures over an extensive interval. Geochemical logs provided useful elemental information to assess the potential role of paramagnetic components that affect surface relaxivity. Principal component analysis of the T2 relaxation time subdivided the spectrum into five distinctive pore-size classes. When the T2 distribution was allocated between grainstones, packstones, and mudstones, the interparticle porosity component of the spectrum takes a bimodal form that marks a distinction between grain-supported and mud-supported texture. This discrimination was also reflected by the computed gamma-ray log, which recorded contributions from potassium and thorium and therefore assessed clay content reflected by fast relaxation times. A megaporosity class was equated with T2 relaxation times summed from 1024 to 2048 ms bins, and the volumetric curve compared favorably with variation over a range of vug sizes observed in the core. The complementary link between grain textures and pore textures was fruitful in the development of geomodels that integrates geologic core observations with petrophysical log measurements.


1988 ◽  
pp. 415-420
Author(s):  
Luis E. Todd ◽  
Guillermo Elizondo ◽  
Ralph Weissleder

Author(s):  
Darius Dabir ◽  
Julian Luetkens ◽  
Daniel Kuetting ◽  
Jennifer Nadal ◽  
Hans Heinz Schild ◽  
...  

Purpose To investigate if T1 and T2 mapping is able to differentiate between diseased and healthy myocardium in patients with systemic sarcoidosis, and to compare the standard mapping measurement (measurement within the whole myocardium of the midventricular short axis slice, SAX) to a more standardized method measuring relaxation times within the midventricular septum (ConSept). Materials and Methods 24 patients with biopsy-proven extracardiac sarcoidosis and 17 healthy control subjects were prospectively enrolled in this study and underwent CMR imaging at 1.5 T including native T1 and T2 mapping. Patients were divided into patients with (LGE+) and without (LGE–) cardiac sarcoidosis. T1 and T2 relaxation times were compared between patients and controls. Furthermore, the SAX and the ConSept approach were compared regarding differentiation between healthy and diseased myocardium. Results T1 and T2 relaxation times were significantly longer in all patients compared with controls using both the SAX and the ConSept approach (p < 0.05). However, LGE+ and LGE– patients showed no significant differences in T1 and T2 relaxation times regardless of the measurement approach used (ConSept/SAX) (p > 0.05). Direct comparison of ConSept and SAX T1 mapping showed high conformity in the discrimination between healthy and diseased myocardium (Kappa = 0.844). Conclusion T1 and T2 mapping may not only enable noninvasive recognition of cardiac involvement in patients with systemic sarcoidosis but may also serve as a marker for early cardiac involvement of the disease allowing for timely treatment. ConSept T1 mapping represents an equivalent method for tissue characterization in this population compared to the SAX approach. Further studies including follow-up examinations are necessary to confirm these preliminary results. Key Points:  Citation Format


Neurology ◽  
2020 ◽  
Vol 95 (9) ◽  
pp. e1211-e1221 ◽  
Author(s):  
Julia R. Dahlqvist ◽  
Nanna S. Poulsen ◽  
Sofie T. Østergaard ◽  
Freja Fornander ◽  
Josefine de Stricker Borch ◽  
...  

ObjectiveWe followed up patients with facioscapulohumeral muscular dystrophy (FSHD) with sequential examinations over 2 years to investigate whether inflammatory lesions always precede fat replacement, if inflammation can be resolved without muscle degeneration, and if inflammatory lesions in muscle are always followed by fat replacement.MethodsIn this longitudinal study of 10 sequential MRI assessments over 2.5 years, we included 10 patients with FSHD. We used MRI with short TI inversion recovery to identify regions of interest (ROIs) with hyperintensities indicating muscle inflammation. Muscle T2 relaxation time mapping was used as a quantitative marker of muscle inflammation. Dixon sequences quantified muscle fat replacement. Ten healthy controls were examined with a magnetic resonance scan once for determination of normal values of T2 relaxation time.ResultsWe identified 68 ROIs with T2 elevation in the patients with FSHD. New ROIs with T2 elevation arising during the study had muscle fat content of 6.4% to 33.0% (n = 8) and 47.0% to 78.0% lesions that resolved (n = 6). ROIs with T2 elevation had a higher increase in muscle fat content from visits 1 to 10 (7.9 ± 7.9%) compared to ROIs with normal muscle T2 relaxation times (1.7 ± 2.6%; p < 0.0001). Severe T2 elevations were always followed by an accelerated replacement of muscle by fat.ConclusionsOur results suggest that muscle inflammation starts in mildly affected muscles in FSHD, is related to a faster muscle degradation, and continues until the muscles are completely fat replaced.ClinicalTrials.gov identifierNCT02159612.


Sign in / Sign up

Export Citation Format

Share Document