scholarly journals Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography

Author(s):  
Dominik C. Benz ◽  
Sara Ersözlü ◽  
François L. A. Mojon ◽  
Michael Messerli ◽  
Anna K. Mitulla ◽  
...  

Abstract Objectives Deep-learning image reconstruction (DLIR) offers unique opportunities for reducing image noise without degrading image quality or diagnostic accuracy in coronary CT angiography (CCTA). The present study aimed at exploiting the capabilities of DLIR to reduce radiation dose and assess its impact on stenosis severity, plaque composition analysis, and plaque volume quantification. Methods This prospective study includes 50 patients who underwent two sequential CCTA scans at normal-dose (ND) and lower-dose (LD). ND scans were reconstructed with Adaptive Statistical Iterative Reconstruction-Veo (ASiR-V) 100%, and LD scans with DLIR. Image noise (in Hounsfield units, HU) and quantitative plaque volumes (in mm3) were assessed quantitatively. Stenosis severity was visually categorized into no stenosis (0%), stenosis (< 20%, 20–50%, 51–70%, 71–90%, 91–99%), and occlusion (100%). Plaque composition was classified as calcified, non-calcified, or mixed. Results Reduction of radiation dose from ND scans with ASiR-V 100% to LD scans with DLIR at the highest level (DLIR-H; 1.4 mSv vs. 0.8 mSv, p < 0.001) had no impact on image noise (28 vs. 27 HU, p = 0.598). Reliability of stenosis severity and plaque composition was excellent between ND scans with ASiR-V 100% and LD scans with DLIR-H (intraclass correlation coefficients of 0.995 and 0.974, respectively). Comparison of plaque volumes using Bland–Altman analysis revealed a mean difference of − 0.8 mm3 (± 2.5 mm3) and limits of agreement between − 5.8 and + 4.1 mm3. Conclusion DLIR enables a reduction in radiation dose from CCTA by 43% without significant impact on image noise, stenosis severity, plaque composition, and quantitative plaque volume. Key Points •Deep-learning image reconstruction (DLIR) enables radiation dose reduction by over 40% for coronary computed tomography angiography (CCTA). •Image noise remains unchanged between a normal-dose CCTA reconstructed by ASiR-V and a lower-dose CCTA reconstructed by DLIR. •There is no impact on the assessment of stenosis severity, plaque composition, and quantitative plaque volume between the two scans.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elena Michelucci ◽  
Nicoletta Di Giorgi ◽  
Francesco Finamore ◽  
Jeff M. Smit ◽  
Arthur J. H. A. Scholte ◽  
...  

AbstractMolecular markers are suggested to improve the diagnostic and prognostic accuracy in patients with coronary artery disease (CAD) beyond current clinical scores based on age, gender, symptoms and traditional risk factors. In this context, plasma lipids are emerging as predictors of both plaque composition and risk of future events. We aim to identify plasma lipid biomarkers associated to CAD indexes of stenosis severity, plaque lipid content and a comprensive score of CAD extent and its risk. We used a simple high performance liquid chromatography-tandem mass spectrometry method to identify 69 plasma lipids in 132 subjects referred to Coronary Computed Tomography Angiography (CCTA) for suspected CAD, all under statin treatment. Patients were stratified in groups using three different CCTA-based annotations: CTA-risk score, lipid plaque prevalence (LPP) ratio and the coronary artery disease-reporting and data system (CAD-RADS). We identified a common set of lipid biomarkers composed of 7 sphingomyelins and 3 phosphatidylethanolamines, which discriminates between high risk CAD patients and controls regardless of the CAD annotations used (CTA score, LPP ratio, or CAD-RADS). These results highlight the potential of circulating lipids as biomarkers of stenosis severity, non calcified plaque composition and overall plaque risk of events.


2021 ◽  
Author(s):  
kazuhiro takeuchi ◽  
Yasuhiro Ide ◽  
Yuichiro Mori ◽  
Yusuke Uehara ◽  
Hiroshi Sukeishi ◽  
...  

Abstract The novel deep learning image reconstruction (DLIR) is known to change its image quality characteristics according to object contrast and image noise. In clinical practice, computed tomography (CT) image noise is usually controlled by tube current modulation (TCM) to accommodate changes in object size. This study aimed to evaluate the image quality characteristics of DLIR for different object sizes when in-plane noise is controlled by TCM. We used Mercury 4.0 phantoms with different object sizes. Phantom image acquisition was performed on a GE Revolution CT system to investigate the impact of the DLIR algorithm compared to standard reconstructions: filtered back projection (FBP) and hybrid iterative reconstruction (hybrid-IR). For image quality evaluation, the noise power spectrum (NPS), task-based transfer function (TTF), and detectability index (d') were determined. The NPS of DLIR was very similar to that of FBP, and the information in the high-frequency region was maintained. In terms of TTF, DLIR showed higher resolution than hybrid-IR at low- to medium-contrast (Δ50, Δ90HU), but not necessarily higher than FBP. At the simulated contrast and lesion size, DLIR showed higher detectability than hybrid-IR, regardless of the phantom size. In this study, we evaluated a novel DLIR algorithm by reproducing clinical behaviors. The findings indicate that DLIR produces higher image quality than hybrid-IR regardless of the phantom size, although it depends on the reconstruction strength.


2021 ◽  
pp. 1-12
Author(s):  
Lu-Lu Li ◽  
Huang Wang ◽  
Jian Song ◽  
Jin Shang ◽  
Xiao-Ying Zhao ◽  
...  

OBJECTIVES: To explore the feasibility of achieving diagnostic images in low-dose abdominal CT using a Deep Learning Image Reconstruction (DLIR) algorithm. METHODS: Prospectively enrolled 47 patients requiring contrast-enhanced abdominal CT scans. The late-arterial phase scan was added and acquired using lower-dose mode (tube current range, 175–545 mA; 80 kVp for patients with BMI ≤24 kg/m2 and 100 kVp for patients with BMI >  24 kg/m2) and reconstructed with DLIR at medium setting (DLIR-M) and high setting (DLIR-H), ASIR-V at 0% (FBP), 40% and 80% strength. Both the quantitative measurement and qualitative analysis of the five types of reconstruction methods were compared. In addition, radiation dose and image quality between the early-arterial phase ASIR-V images using standard-dose and the late-arterial phase DLIR images using low-dose were compared. RESULTS: For the late-arterial phase, all five reconstructions had similar CT value (P >  0.05). DLIR-H, DLIR-M and ASIR-V80% images significantly reduced the image noise and improved the image contrast noise ratio, compared with the standard ASIR-V40% images (P <  0.05). ASIR-V80% images had undesirable image characteristics with obvious “waxy” artifacts, while DLIR-H images maintained high spatial resolution and had the highest subjective image quality. Compared with the early-arterial scans, the late-arterial phase scans significantly reduced the radiation dose (P <  0.05), while the DLIR-H images exhibited lower image noise and good display of the specific image details of lesions. CONCLUSIONS: DLIR algorithm improves image quality under low-dose scan condition and may be used to reduce the radiation dose without adversely affecting the image quality.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Lin ◽  
N Manral ◽  
P McElhinney ◽  
A Killekar ◽  
H Matsumoto ◽  
...  

Abstract Background Atherosclerotic plaque quantification from coronary computed tomography angiography (CTA) enables accurate assessment of coronary artery disease burden, progression, and prognosis. However, quantitative plaque analysis is time-consuming and requires high expertise. We sought to develop and externally validate an artificial intelligence (AI)-based deep learning (DL) approach for CTA-derived measures of plaque volume and stenosis severity. We compared the performance of DL to expert readers and the gold standard of intravascular ultrasound (IVUS). Methods This was a multicenter study of patients undergoing coronary CTA at 11 sites, with software-based quantitative plaque measurements performed at a per-lesion level by expert readers. AI-based plaque analysis was performed by a DL novel convolutional neural network which automatically segmented the coronary artery wall, lumen, and plaque for the computation of plaque volume and stenosis severity. Using expert measurements as ground truth, the DL algorithm was trained on 887 patients (4,686 lesions). Thereafter, the algorithm was applied to an independent test set of 221 patients (1,234 lesions), which included an external validation cohort of 171 patients from the SCOT-HEART (Scottish Computed Tomography of the Heart) trial as well as 50 patients who underwent IVUS within one month of CTA. We report the performance of AI-based plaque analysis in the independent test set. Results Within the external validation cohort, there was excellent agreement between DL and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0.876), noncalcified plaque volume (ICC 0.869), and percent diameter stenosis (ICC 0.850; all p&lt;0.001). When compared with IVUS, there was excellent agreement for DL total plaque volume (ICC 0.945), total plaque burden (ICC 0.853), minimal luminal area (ICC 0.864), and percent area stenosis (ICC 0.805; all p&lt;0.001); with strong correlation between DL and IVUS for total plaque volume (r=0.915; p&lt;0.001; Figure). The average DL plaque analysis time was 20 seconds per patient, compared with 25–30 minutes taken by experts. Conclusions AI-based plaque quantification from coronary CTA using an externally validated DL approach enables rapid measurements of plaque volume and stenosis severity in close agreement with expert readers and IVUS. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Heart, Lung, and Blood Institute, United States


2021 ◽  
Vol 10 (4) ◽  
pp. 205846012110083
Author(s):  
Tormund Njølstad ◽  
Anselm Schulz ◽  
Johannes C Godt ◽  
Helga M Brøgger ◽  
Cathrine K Johansen ◽  
...  

Background A novel Deep Learning Image Reconstruction (DLIR) technique for computed tomography has recently received clinical approval. Purpose To assess image quality in abdominal computed tomography reconstructed with DLIR, and compare with standardly applied iterative reconstruction. Material and methods Ten abdominal computed tomography scans were reconstructed with iterative reconstruction and DLIR of medium and high strength, with 0.625 mm and 2.5 mm slice thickness. Image quality was assessed using eight visual grading criteria in a side-by-side comparative setting. All series were presented twice to evaluate intraobserver agreement. Reader scores were compared using univariate logistic regression. Image noise and contrast-to-noise ratio were calculated for quantitative analyses. Results For 2.5 mm slice thickness, DLIR images were more frequently perceived as equal or better than iterative reconstruction across all visual grading criteria (for both DLIR of medium and high strength, p < 0.001). Correspondingly, DLIR images were more frequently perceived as better (as opposed to equal or in favor of iterative reconstruction) for visual reproduction of liver parenchyma, intrahepatic vascular structures as well as overall impression of image noise and texture (p < 0.001). This improved image quality was also observed for 0.625 mm slice images reconstructed with DLIR of high strength when directly comparing to traditional iterative reconstruction in 2.5 mm slices. Image noise was significantly lower and contrast-to-noise ratio measurements significantly higher for images reconstructed with DLIR compared to iterative reconstruction (p < 0.01). Conclusions Abdominal computed tomography images reconstructed using a DLIR technique shows improved image quality when compared to standardly applied iterative reconstruction across a variety of clinical image quality criteria.


Sign in / Sign up

Export Citation Format

Share Document