scholarly journals Improved image quality in abdominal computed tomography reconstructed with a novel Deep Learning Image Reconstruction technique – initial clinical experience

2021 ◽  
Vol 10 (4) ◽  
pp. 205846012110083
Author(s):  
Tormund Njølstad ◽  
Anselm Schulz ◽  
Johannes C Godt ◽  
Helga M Brøgger ◽  
Cathrine K Johansen ◽  
...  

Background A novel Deep Learning Image Reconstruction (DLIR) technique for computed tomography has recently received clinical approval. Purpose To assess image quality in abdominal computed tomography reconstructed with DLIR, and compare with standardly applied iterative reconstruction. Material and methods Ten abdominal computed tomography scans were reconstructed with iterative reconstruction and DLIR of medium and high strength, with 0.625 mm and 2.5 mm slice thickness. Image quality was assessed using eight visual grading criteria in a side-by-side comparative setting. All series were presented twice to evaluate intraobserver agreement. Reader scores were compared using univariate logistic regression. Image noise and contrast-to-noise ratio were calculated for quantitative analyses. Results For 2.5 mm slice thickness, DLIR images were more frequently perceived as equal or better than iterative reconstruction across all visual grading criteria (for both DLIR of medium and high strength, p < 0.001). Correspondingly, DLIR images were more frequently perceived as better (as opposed to equal or in favor of iterative reconstruction) for visual reproduction of liver parenchyma, intrahepatic vascular structures as well as overall impression of image noise and texture (p < 0.001). This improved image quality was also observed for 0.625 mm slice images reconstructed with DLIR of high strength when directly comparing to traditional iterative reconstruction in 2.5 mm slices. Image noise was significantly lower and contrast-to-noise ratio measurements significantly higher for images reconstructed with DLIR compared to iterative reconstruction (p < 0.01). Conclusions Abdominal computed tomography images reconstructed using a DLIR technique shows improved image quality when compared to standardly applied iterative reconstruction across a variety of clinical image quality criteria.

2021 ◽  
Author(s):  
kazuhiro takeuchi ◽  
Yasuhiro Ide ◽  
Yuichiro Mori ◽  
Yusuke Uehara ◽  
Hiroshi Sukeishi ◽  
...  

Abstract The novel deep learning image reconstruction (DLIR) is known to change its image quality characteristics according to object contrast and image noise. In clinical practice, computed tomography (CT) image noise is usually controlled by tube current modulation (TCM) to accommodate changes in object size. This study aimed to evaluate the image quality characteristics of DLIR for different object sizes when in-plane noise is controlled by TCM. We used Mercury 4.0 phantoms with different object sizes. Phantom image acquisition was performed on a GE Revolution CT system to investigate the impact of the DLIR algorithm compared to standard reconstructions: filtered back projection (FBP) and hybrid iterative reconstruction (hybrid-IR). For image quality evaluation, the noise power spectrum (NPS), task-based transfer function (TTF), and detectability index (d') were determined. The NPS of DLIR was very similar to that of FBP, and the information in the high-frequency region was maintained. In terms of TTF, DLIR showed higher resolution than hybrid-IR at low- to medium-contrast (Δ50, Δ90HU), but not necessarily higher than FBP. At the simulated contrast and lesion size, DLIR showed higher detectability than hybrid-IR, regardless of the phantom size. In this study, we evaluated a novel DLIR algorithm by reproducing clinical behaviors. The findings indicate that DLIR produces higher image quality than hybrid-IR regardless of the phantom size, although it depends on the reconstruction strength.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jihang Sun ◽  
Haoyan Li ◽  
Bei Wang ◽  
Jianying Li ◽  
Michelle Li ◽  
...  

Abstract Background To evaluate the performance of a Deep Learning Image Reconstruction (DLIR) algorithm in pediatric head CT for improving image quality and lesion detection with 0.625 mm thin-slice images. Methods Low-dose axial head CT scans of 50 children with 120 kV, 0.8 s rotation and age-dependent 150–220 mA tube current were selected. Images were reconstructed at 5 mm and 0.625 mm slice thickness using Filtered back projection (FBP), Adaptive statistical iterative reconstruction-v at 50% strength (50%ASIR-V) (as reference standard), 100%ASIR-V and DLIR-high (DL-H). The CT attenuation and standard deviation values of the gray and white matters in the basal ganglia were measured. The clarity of sulci/cisterns, boundary between white and gray matters, and overall image quality was subjectively evaluated. The number of lesions in each reconstruction group was counted. Results The 5 mm FBP, 50%ASIR-V, 100%ASIR-V and DL-H images had a subjective score of 2.25 ± 0.44, 3.05 ± 0.23, 2.87 ± 0.39 and 3.64 ± 0.49 in a 5-point scale, respectively with DL-H having the lowest image noise of white matter at 2.00 ± 0.34 HU; For the 0.625 mm images, only DL-H images met the diagnostic requirement. The 0.625 mm DL-H images had similar image noise (3.11 ± 0.58 HU) of the white matter and overall image quality score (3.04 ± 0.33) as the 5 mm 50% ASIR-V images (3.16 ± 0.60 HU and 3.05 ± 0.23). Sixty-five lesions were recognized in 5 mm 50%ASIR-V images and 69 were detected in 0.625 mm DL-H images. Conclusion DL-H improves the head CT image quality for children compared with ASIR-V images. The 0.625 mm DL-H images improve lesion detection and produce similar image noise as the 5 mm 50%ASIR-V images, indicating a potential 85% dose reduction if current image quality and slice thickness are desired.


2021 ◽  
Author(s):  
Jihang Sun ◽  
Haoyan Li ◽  
Jianying Li ◽  
Haiyun Li ◽  
Michelle Li ◽  
...  

Abstract purpose: To evaluate the image quality improvement in CTA of children with Takayasu arteritis (TAK) using a Deep learning image reconstruction (DLIR) in comparison to other reconstruction algorithms.Methods: 32 patients (9.14±4.51 years old) with TAK underwent neck, chest and abdominal CTA with 100kVp were enrolled. Images were reconstructed at 0.625mm slice thickness using Filtered Back-Projection (FBP), 50% adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). The CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers.Results: There was no significant difference in CT number across all reconstructions. The image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 with FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P>0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P<0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, but only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). Conclusions: DLIR-H improves the CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.


Author(s):  
Jihang Sun ◽  
Haoyan Li ◽  
Haiyun Li ◽  
Michelle Li ◽  
Yingzi Gao ◽  
...  

BACKGROUND: The inflammatory indexes of children with Takayasu arteritis (TAK) usually tend to be normal immediately after treatment, therefore, CT angiography (CTA) has become an important method to evaluate the status of TAK and sometime is even more sensitive than laboratory test results. OBJECTIVE: To evaluate image quality improvement in CTA of children diagnosed with TAK using a deep learning image reconstruction (DLIR) in comparison to other image reconstruction algorithms. METHODS: hirty-two TAK patients (9.14±4.51 years old) underwent neck, chest and abdominal CTA using 100 kVp were enrolled. Images were reconstructed at 0.625 mm slice thickness using Filtered Back-Projection (FBP), 50%adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers. RESULTS: There was no significant difference in CT number across images reconstructed using different algorithms. Image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 using FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P >  0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P <  0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, however, only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). CONCLUSION: DLIR-H improves CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.


Sign in / Sign up

Export Citation Format

Share Document