First-time observation of Mastro Giorgio masterpieces by means of non-destructive techniques

2006 ◽  
Vol 83 (4) ◽  
pp. 475-483 ◽  
Author(s):  
G. Padeletti ◽  
G.M. Ingo ◽  
A. Bouquillon ◽  
S. Pages-Camagna ◽  
M. Aucouturier ◽  
...  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
F. Fazlali ◽  
S. Gorji Kandi

Abstract Employing an economical and non-destructive method for identifying pigments utilized in artworks is a significant aspect for preserving their antiquity value. One of the non-destructive methods for this purpose is spectrophotometry, which is based on the selected absorption of light. Mathematical descriptive methods such as derivatives of the reflectance spectrum, the Kubelka–Munk function and logarithm have been employed for the characterization of the peak features corresponding to the spectrophotometric data. In the present study, the mentioned mathematical descriptive methods were investigated with the aim to characterize the constituents of an Iranian artwork but were not efficient for the samples. Therefore, inverse tangent derivative equation was developed on spectral data for the first time, providing considerable details in the profile of reflectance curves. In the next part, to have a simpler and more practical method it was suggested to use filters made up of pure pigments. By using these filters and placing them on the samples, imaging was done. Then, images of samples with and without filter were evaluated and pure pigments were distinguished. The mentioned methods were also used to identify pigments in a modern Iranian painting specimen. The results confirmed these methods with reliable answers indicating that physical methods (alongside chemical methods) can also be effective in determining the types of pigments.


2008 ◽  
Vol 38 (6) ◽  
pp. 783-793 ◽  
Author(s):  
D. Breysse ◽  
G. Klysz ◽  
X. Dérobert ◽  
C. Sirieix ◽  
J.F. Lataste

2016 ◽  
Vol 62 (1) ◽  
pp. 65-82 ◽  
Author(s):  
J. Orlowsky

Abstract A large number of infrastructural concrete buildings are protected against aggressive environments by coating systems. The functionality of these coating systems is mainly affected by the composition and thickness of the individual polymeric layers. For the first time ever, a mobile nuclear magnetic resonance (NMR) sensor allows a non-destructive determination of these important parameters on the building site. However, before this technique can be used on steel-reinforced concrete elements, the potential effect of the reinforcement on the measurement, i.e. the NMR signal, needs to be studied. The results show a shift of the NMR profile as well as an increase of the signals amplitude in the case of the reinforced samples, while calculating the thickness of concrete coating leading to identical results.


2021 ◽  
Vol 36 (5) ◽  
pp. 596-607
Author(s):  
O. Ekşi

Abstract The aim of this study is to determine the thickness distribution of a food package using a non-destructive method. Initially, thickness measurements were carried out using an experimental procedure for thermoformed samples that were used for food packaging. Additionally, in this study, image analysis was used for the first time to determine the thickness distribution of the thermoformed products non-destructively. Image analysis software was employed for the estimation of thickness distribution. Measured thickness results were compared to those estimated using image analysis. Based on the results of the current study, image analysis may be an alternative method for non-destructive testing of thermoformed food packages even in a mass production line. Image analysis can be used to determine not only thickness distribution but also the weakest regions in a food package.


2018 ◽  
Vol 62 (5) ◽  
pp. 1049-1057 ◽  
Author(s):  
A-F. Obaton ◽  
M-Q. Lê ◽  
V. Prezza ◽  
D. Marlot ◽  
P. Delvart ◽  
...  

Author(s):  
Andrew Celovsky ◽  
John Slade

CANDU reactors use Zr-2.5 Nb alloy pressure tubes, as the primary pressure boundary within the reactor core. These components are subject to periodic inspection and material surveillance programs. Occasionally, the inspection program uncovers a flaw, whereupon the flaw is assessed as to whether it compromises the integrity of the pressure-retaining component. In 1998, such a flaw was observed in one pressure tube of a reactor. Non-destructive techniques and analysis were used to form a basis to disposition the flaw, and the component was fit for a limited service life. This component was eventually removed from service, whereupon the destructive examinations were used to validate the disposition assumptions used. Such a process of validation provides credibility to the disposition process. This paper reviews the original flaw and its subsequent destructive evaluation.


Author(s):  
Daniel V. Oliveira ◽  
Reza Allahvirdizadeh ◽  
Ana Sánchez ◽  
Belen Riveiro ◽  
Nuno Mendes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document