Improved piezoelectric performance of 0.965 (K0.48Na0.52)(Nb0.96Sb0.04)O3 − 0.035Bi0.5Na0.5Zr0.15Hf0.75O3 piezocomposites using inherently auxetic polyethylene matrix

2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Saptarshi Karmakar ◽  
Raj Kiran ◽  
Vishal Singh Chauhan ◽  
Rahul Vaish
2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


2020 ◽  
Vol 244 ◽  
pp. 122639 ◽  
Author(s):  
Avijit Pal ◽  
Abhishek Sasmal ◽  
Bindu Manoj ◽  
DSD Prasada Rao ◽  
A.K. Haldar ◽  
...  

Author(s):  
Lu Wang ◽  
Shengdong Sun ◽  
Huajie Luo ◽  
Yang Ren ◽  
Hui Liu ◽  
...  

The realization of high piezoelectric performance and excellent temperature stability simultaneously in lead-free ceramics is the key for replacing Pb-containing perovskites in industry. In this study, large piezoelectric performance (d33...


Author(s):  
Sarra Missaoui ◽  
Ayda Bouhamed ◽  
Mohamed Hassan Khedri ◽  
Hamadi Khemakhem ◽  
Olfa Kanoun

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2616-2623
Author(s):  
Weijie Zheng ◽  
Jiaqi Lin ◽  
Xinmei Liu ◽  
Wenlong Yang ◽  
Yuanshuo Li

(Ba0.85Ca0.15)(Zr0.1Ti0.9−xCex)O3+ySb ceramics prepared by the conventional solid-state reaction.


2018 ◽  
Vol 219 (13) ◽  
pp. 1800041 ◽  
Author(s):  
Sandra M. Rojas-Montoya ◽  
Mireille Vonlanthen ◽  
Andrea Ruiu ◽  
Efraín Rodríguez-Alba ◽  
Guillermina Burillo ◽  
...  

2015 ◽  
Vol 16 (1) ◽  
pp. 129-137 ◽  
Author(s):  
M. E. Ali Mohsin ◽  
Agus Arsad ◽  
Syed K. H. Gulrez ◽  
Zurina Muhamad ◽  
H. Fouad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document