scholarly journals Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments: a comparative study

2006 ◽  
Vol 83 (3) ◽  
pp. 403-411 ◽  
Author(s):  
T. Dreier ◽  
B. Bougie ◽  
N. Dam ◽  
T. Gerber
1995 ◽  
Vol 20 (22) ◽  
pp. 2342 ◽  
Author(s):  
Stefan Will ◽  
Stephan Schraml ◽  
Alfred Leipertz

2008 ◽  
Vol 130 (12) ◽  
Author(s):  
K. J. Daun ◽  
G. J. Smallwood ◽  
F. Liu

Accurate particle sizing through time-resolved laser-induced incandescence (TR-LII) requires knowledge of the thermal accommodation coefficient, but the underlying physics of this parameter is poorly understood. If the particle size is known a priori, however, TR-LII data can instead be used to infer the thermal accommodation coefficient. Thermal accommodation coefficients measured between soot and different monatomic and polyatomic gases show that the accommodation coefficient increases with molecular mass for monatomic gases and is lower for polyatomic gases. This latter result indicates that surface energy is accommodated preferentially into translational modes over internal modes for these gases.


2015 ◽  
Vol 229 (5) ◽  
Author(s):  
Martin Leschowski ◽  
Thomas Dreier ◽  
Christof Schulz

AbstractSoot formation and oxidation in high-pressure combustion is of high practical relevance but still sparsely investigated because of its experimental complexity. In this work we present a high-pressure burner for studying sooting premixed flames at pressures up to 30 bar. An optically accessible vessel houses a burner that stabilizes a rich premixed ethylene/air flame on a porous sintered stainless-steel plate. The flame is surrounded by a non-sooting rich methane/air flame and an air coflow for reducing temperature gradients, buoyancy-induced instabilities, and heat loss of the innermost flame. Spectrally-resolved soot pyrometry was used for determining gas temperatures. These were introduced into model functions to fit the temporal signal decay curves obtained from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements for extracting soot volume fractions and mean particle size as a function of height above burner and gas pressure. The derived mean particle sizes and soot concentrations were compared against thermophoretically sampled soot analyzed via transmission electron microscopy (TEM) and laser extinction measurements at 785 nm, respectively. Soot volume fractions derived from LII peak signal intensities need to be corrected for signal attenuation at the high soot concentrations present in the investigated flame. From the various heat conduction models employed in deriving mean soot particle diameters from TiRe-LII, the Fuchs model gave remarkably good agreement with TEM on sampled soot at various heights above the burner.


Sign in / Sign up

Export Citation Format

Share Document