Bulk channel-type reconfigurable light-induced waveguides recorded by crossed lateral illumination

2009 ◽  
Vol 95 (3) ◽  
pp. 565-572 ◽  
Author(s):  
M. Gorram ◽  
V. Coda ◽  
P. Thévenin ◽  
G. Montemezzani
1997 ◽  
Vol 234-236 ◽  
pp. 109-111 ◽  
Author(s):  
M. Bée ◽  
J. Combet ◽  
N-D. Morelon ◽  
M. Ferrand ◽  
D. Djurado ◽  
...  

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Shuangcheng Yu ◽  
Yichi Zhang ◽  
Chen Wang ◽  
Won-kyu Lee ◽  
Biqin Dong ◽  
...  

Quasi-random nanostructures are playing an increasingly important role in developing advanced material systems with various functionalities. Current development of functional quasi-random nanostructured material systems (NMSs) mainly follows a sequential strategy without considering the fabrication conditions in nanostructure optimization, which limits the feasibility of the optimized design for large-scale, parallel nanomanufacturing using bottom-up processes. We propose a novel design methodology for designing isotropic quasi-random NMSs that employs spectral density function (SDF) to concurrently optimize the nanostructure and design the corresponding nanomanufacturing conditions of a bottom-up process. Alternative to the well-known correlation functions for characterizing the structural correlation of NMSs, the SDF provides a convenient and informative design representation that maps processing–structure relation to enable fast explorations of optimal fabricable nanostructures and to exploit the stochastic nature of manufacturing processes. In this paper, we first introduce the SDF as a nondeterministic design representation for quasi-random NMSs, as an alternative to the two-point correlation function. Efficient reconstruction methods for quasi-random NMSs are developed for handling different morphologies, such as the channel-type and particle-type, in simulation-based microstructural design. The SDF-based computational design methodology is illustrated by the optimization of quasi-random light-trapping nanostructures in thin-film solar cells for both channel-type and particle-type NMSs. Finally, the concurrent design strategy is employed to optimize the quasi-random light-trapping structure manufactured via scalable wrinkle nanolithography process.


2001 ◽  
Vol 204 (2) ◽  
pp. 367-378 ◽  
Author(s):  
K.R. O'Connor ◽  
K.W. Beyenbach

Stellate cells of Aedes aegypti Malpighian tubules were investigated using patch-clamp methods to probe the route of transepithelial Cl(−) secretion. Two types of Cl(−) channel were identified in excised, inside-out apical membrane patches. The first Cl(−) channel, type I, had a conductance of 24 pS, an open probability of 0.816+/−0.067, an open time of 867+/−114 ms (mean +/− s.e.m., four patches) and the selectivity sequence I(−)>Cl(−)(much greater than) isethionate>gluconate. The I(−)/Cl(−)>>isethionate>gluconate. The I(−)Cl(−) permeability ratio was 1.48, corresponding to Eisenman sequence I. The type I Cl(−) channel was blocked by 2,2′-iminodibenzoic acid (DPC) and niflumic acid (2-[3-(trifluoromethyl)anilo]nicotinic acid). The removal of Ca(2+) from the Ringer's solution on the cytoplasmic side had no effect on channel activity. The second Cl(−) channel, type II, had a conductance of 8 pS, an open probability of 0.066+/−0.021 and an open time of 7.53+/−1.46 ms (mean +/− s.e.m., four patches). The high density and halide selectivity sequence of the type I Cl(−) channel is consistent with a role in transepithelial Cl(−) secretion under control conditions, but it remains to be determined whether these Cl(−) channels also mediate transepithelial Cl(−) secretion under diuretic conditions in the presence of leucokinin.


Author(s):  
Takuya Yamamoto ◽  
Keisuke Kamiya ◽  
Keita Fukawa ◽  
Shohei Yomogida ◽  
Takashi Kubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document