Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame

2009 ◽  
Vol 96 (4) ◽  
pp. 645-656 ◽  
Author(s):  
H. Bladh ◽  
J. Johnsson ◽  
P.-E. Bengtsson
1991 ◽  
Vol 236 ◽  
Author(s):  
Francis X. Campos ◽  
Gabriela C. Weaver ◽  
Curtis J. Waltman ◽  
Stephen R. Leone

AbstractExposing a Si(100) surface to a pulsed beam of neutral Cl2 with high translational energy results in etching at a rate faster than that seen with chlorine at thermal energies. The Cl2 beam used in these experiments is produced by laser vaporization of cryogenic films. It has a broad energy distribution which can be varied by changing laser energy and film thickness. Beams with mean energies as low as 0.4 eV result in etching =10 times faster than etching by thermal Cl2. When Cl2 beams are used which have considerable flux above 3 eV, the etching rate increases by a further factor of 3.6 ± 0.6. This rate increase, which occurs at energies just above the Si-Si bond energy, suggests that kinetic energy can be efficiently utilized to break surface bonds.


1995 ◽  
Vol 20 (22) ◽  
pp. 2342 ◽  
Author(s):  
Stefan Will ◽  
Stephan Schraml ◽  
Alfred Leipertz

2014 ◽  
Vol 6 ◽  
pp. 640496 ◽  
Author(s):  
G. V. Salmoria ◽  
D. Hotza ◽  
P. Klauss ◽  
L. A. Kanis ◽  
C. R. M. Roesler

The techniques of Rapid Prototyping, also known as Additive Manufacturing, have prompted research into methods of manufacturing polymeric materials with controlled porosity. This paper presents the characterization of the structure and mechanical properties of porous polycaprolactone (PCL) fabricated by Selective Laser Sintering (SLS) using two different particle sizes and laser processing conditions. The results of this study indicated that it is possible to control the microstructure, that is, pore size and degree of porosity, of the polycaprolactone matrix using the SLS technique, by varying the particle size and laser energy density, obtaining materials suitable for different applications, scaffolds and drug delivery and fluid mechanical devices. The specimens manufactured with smaller particles and higher laser energy density showed a higher degree of sintering, flexural modulus, and fatigue resistance when compared with the other specimens.


1981 ◽  
Vol 18 (1) ◽  
pp. 1137-1147 ◽  
Author(s):  
H. Bockhorn ◽  
F. Fetting ◽  
U. Meyer ◽  
R. Reck ◽  
G. Wannemacher

2017 ◽  
Vol 123 (4) ◽  
Author(s):  
Linghong Chen ◽  
Jian Wu ◽  
Mingming Yan ◽  
Xuecheng Wu ◽  
Gérard Gréhan ◽  
...  

2011 ◽  
Vol 287-290 ◽  
pp. 2191-2194 ◽  
Author(s):  
Wei Yao ◽  
Shui Li Gong

The distribution and appearance characteristics of porosities in laser penetrated weld of aluminum alloy were observed, and the formation mechanisms of porosities were analyzed in detail, and the influences of twin spot laser energy distribution on porosities were investigated. It showed that there are two kinds of porosities, metallurgical and technologic porosities, in laser penetrated weld of aluminum alloy. The formation of metallurgical porosities is related to the separation, congregation and incorporation of hydrogen in the weld pool, while instantaneous instability of the keyhole is an essential reason for the occurrence of technologic porosities. Twin spot laser energy distribution can enlarge diameters of the opening and the root of the keyhole, improve fluctuating conditions of the wall of the keyhole, increase stability of the keyhole, and consequently decrease technologic porosities in number, but it has no obvious influence on metallurgical porosities.


Sign in / Sign up

Export Citation Format

Share Document