Pseudomonas putida and Pseudomonas fluorescens Influence Arabidopsis Root System Architecture Through an Auxin Response Mediated by Bioactive Cyclodipeptides

2019 ◽  
Vol 39 (1) ◽  
pp. 254-265 ◽  
Author(s):  
Randy Ortiz-Castro ◽  
Jesús Campos-García ◽  
José López-Bucio
2015 ◽  
Vol 8 (3) ◽  
pp. 439-453 ◽  
Author(s):  
Guilhem Reyt ◽  
Soukaina Boudouf ◽  
Jossia Boucherez ◽  
Frédéric Gaymard ◽  
Jean-Francois Briat

2012 ◽  
Vol 53 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Ramón Pelagio-Flores ◽  
Edith Muñoz-Parra ◽  
Randy Ortiz-Castro ◽  
José López-Bucio

Microscopy ◽  
2019 ◽  
Vol 68 (Supplement_1) ◽  
pp. i51-i51
Author(s):  
Tomofumi Kurogane ◽  
Daisuke Tamaoki ◽  
Sachiko Yano ◽  
Fumiaki Tanigaki ◽  
Toru Shimazu ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
pp. 438-451 ◽  
Author(s):  
Salvador Barrera-Ortiz ◽  
Amira Garnica-Vergara ◽  
Saraí Esparza-Reynoso ◽  
Elizabeth García-Cárdenas ◽  
Javier Raya-González ◽  
...  

2014 ◽  
Author(s):  
G. Reyt ◽  
S. Boudouf ◽  
J. Boucherez ◽  
F. Gaymard ◽  
J.-F. Briat

2020 ◽  
Vol 11 ◽  
Author(s):  
Waldiodio Seck ◽  
Davoud Torkamaneh ◽  
François Belzile

Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P < 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Admas Alemu ◽  
Tileye Feyissa ◽  
Marco Maccaferri ◽  
Giuseppe Sciara ◽  
Roberto Tuberosa ◽  
...  

Abstract Background Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina. Results Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (− log10P ≥ 4) and 34 nominal (− log10P ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight). Conclusions After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions.


BioMetals ◽  
2021 ◽  
Author(s):  
Ricardo Ortiz-Luevano ◽  
José López-Bucio ◽  
Miguel Martínez-Trujillo ◽  
Lenin Sánchez-Calderón

Sign in / Sign up

Export Citation Format

Share Document