scholarly journals PB-11 3D-Modeling of Arabidopsis Root System Architecture by X-ray Micro-CT at SPring-8: Observation at Different Experimental Hutches

Microscopy ◽  
2019 ◽  
Vol 68 (Supplement_1) ◽  
pp. i51-i51
Author(s):  
Tomofumi Kurogane ◽  
Daisuke Tamaoki ◽  
Sachiko Yano ◽  
Fumiaki Tanigaki ◽  
Toru Shimazu ◽  
...  
2012 ◽  
Vol 110 (2) ◽  
pp. 511-519 ◽  
Author(s):  
Saoirse R. Tracy ◽  
Colin R. Black ◽  
Jeremy A. Roberts ◽  
Craig Sturrock ◽  
Stefan Mairhofer ◽  
...  

2013 ◽  
Vol 370 (1-2) ◽  
pp. 35-45 ◽  
Author(s):  
Susan Zappala ◽  
Stefan Mairhofer ◽  
Saoirse Tracy ◽  
Craig J. Sturrock ◽  
Malcolm Bennett ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 439-453 ◽  
Author(s):  
Guilhem Reyt ◽  
Soukaina Boudouf ◽  
Jossia Boucherez ◽  
Frédéric Gaymard ◽  
Jean-Francois Briat

2012 ◽  
Vol 53 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Ramón Pelagio-Flores ◽  
Edith Muñoz-Parra ◽  
Randy Ortiz-Castro ◽  
José López-Bucio

2016 ◽  
Vol 171 (3) ◽  
pp. 2028-2040 ◽  
Author(s):  
Eric D. Rogers ◽  
Daria Monaenkova ◽  
Medhavinee Mijar ◽  
Apoorva Nori ◽  
Daniel I. Goldman ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
M. R. Shao ◽  
N. Jiang ◽  
M. Li ◽  
A. Howard ◽  
K. Lehner ◽  
...  

The root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance, nutrient accumulation, and yield in crop species. Although many methods of root phenotyping exist, within field studies, one of the most popular methods is the extraction and measurement of the upper portion of the root system, known as the root crown, followed by trait quantification based on manual measurements or 2D imaging. However, 2D techniques are inherently limited by the information available from single points of view. Here, we used X-ray computed tomography to generate highly accurate 3D models of maize root crowns and created computational pipelines capable of measuring 71 features from each sample. This approach improves estimates of the genetic contribution to root system architecture and is refined enough to detect various changes in global root system architecture over developmental time as well as more subtle changes in root distributions as a result of environmental differences. We demonstrate that root pulling force, a high-throughput method of root extraction that provides an estimate of root mass, is associated with multiple 3D traits from our pipeline. Our combined methodology can therefore be used to calibrate and interpret root pulling force measurements across a range of experimental contexts or scaled up as a stand-alone approach in large genetic studies of root system architecture.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shota Teramoto ◽  
Takanari Tanabata ◽  
Yusaku Uga

Abstract Background The root distribution in the soil is one of the elements that comprise the root system architecture (RSA). In monocots, RSA comprises radicle and crown roots, each of which can be basically represented by a single curve with lateral root branches or approximated using a polyline. Moreover, RSA vectorization (polyline conversion) is useful for RSA phenotyping. However, a robust software that can enable RSA vectorization while using noisy three-dimensional (3D) volumes is unavailable. Results We developed RSAtrace3D, which is a robust 3D RSA vectorization software for monocot RSA phenotyping. It manages the single root (radicle or crown root) as a polyline (a vector), and the set of the polylines represents the entire RSA. RSAtrace3D vectorizes root segments between the two ends of a single root. By utilizing several base points on the root, RSAtrace3D suits noisy images if it is difficult to vectorize it using only two end nodes of the root. Additionally, by employing a simple tracking algorithm that uses the center of gravity (COG) of the root voxels to determine the tracking direction, RSAtrace3D efficiently vectorizes the roots. Thus, RSAtrace3D represents the single root shape more precisely than straight lines or spline curves. As a case study, rice (Oryza sativa) RSA was vectorized from X-ray computed tomography (CT) images, and RSA traits were calculated. In addition, varietal differences in RSA traits were observed. The vector data were 32,000 times more compact than raw X-ray CT images. Therefore, this makes it easier to share data and perform re-analyses. For example, using data from previously conducted studies. For monocot plants, the vectorization and phenotyping algorithm are extendable and suitable for numerous applications. Conclusions RSAtrace3D is an RSA vectorization software for 3D RSA phenotyping for monocots. Owing to the high expandability of the RSA vectorization and phenotyping algorithm, RSAtrace3D can be applied not only to rice in X-ray CT images but also to other monocots in various 3D images. Since this software is written in Python language, it can be easily modified and will be extensively applied by researchers in this field.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Shota Teramoto ◽  
Satoko Takayasu ◽  
Yuka Kitomi ◽  
Yumiko Arai-Sanoh ◽  
Takanari Tanabata ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
pp. 438-451 ◽  
Author(s):  
Salvador Barrera-Ortiz ◽  
Amira Garnica-Vergara ◽  
Saraí Esparza-Reynoso ◽  
Elizabeth García-Cárdenas ◽  
Javier Raya-González ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document