Effects of drift angle on model ship flow

2002 ◽  
Vol 32 (5) ◽  
pp. 558-569 ◽  
Author(s):  
J. Longo ◽  
F. Stern
Keyword(s):  
1971 ◽  
Vol 24 (2) ◽  
pp. 252-253
Author(s):  
G. R. G. Lewison

Mr. Anneveld's paper (24, 50) would have us believe that the effects of coriolis force on a ship may become appreciable as ship size increases. It is true that the drift angle does increase as the ship's size increases, because the coriolis force given by equation (1) increases as (length)3·5 and the resistive forces increase as (length)3 (on the assumption of geometrically similar ships and Froude scaling). However there is a fundamental flaw in his argument because equation (2) only applies to a vessel with zero forward speed. Moreover the effect of coriolis drift will also be to induce a yaw angle on the ship (because the centre of pressure is forward of the centre of gravity, where the coriolis force may be assumed to act) and this will automatically cause the helmsman or autopilot to apply starboard rudder in the northern hemisphere. This will immediately produce a force on the ship in the port direction, i.e. opposing coriolis force.


2015 ◽  
Author(s):  
Moustafa Abdel-Maksoud ◽  
Volker Müller ◽  
Tao Xing ◽  
Serge Toxopeus ◽  
Frederick Stern ◽  
...  

Investigations of flow characteristics around ship hulls at large drift angle are very important for understanding the motion behavior of ships during maneuvers. At large drift angles, the flow is dominated by strong vortical structures and complex three-dimensional separations. An accurate prediction of these flow structures is still a challenge for modern computational fluid dynamics (CFD) solvers. Hull forms with high block coefficients are blunt and have strong curvatures, which leads to large area flow separations over smooth surfaces. These areas are sensitive to the relative angle between the flow and the ship motion direction. The paper is concerned with a collaborative computational study of the flow behavior around a double model of KVLCC2 at 30 degrees drift angle and Fr=0 condition, including analysis of numerical methods, turbulence modeling and grid resolution, and their effects on the mean flow and separation onset as well as formation of the vortical structures. This research is an outcome of a multi-year collaboration of five research partners from four countries. The overall approach adopted for the present study combines the advantages of CFD and EFD with the ultimate goal of capturing the salient details of the flow around the bluff hull form. The experiments were performed at the low - speed wind tunnel of the Hamburg University of Technology (TUHH). The main features of the global and local flow were captured in the experimental study. To determine the global flow characteristics, two different flow visualization techniques were used. The first one is a smoke test, which allows the visualization of vortex structures in vicinity of the ship model. The second test is a classic oil film method, which yields the direction of the limiting wall streamlines on the surface of the model. The analysis of the experimental results helped identify the separation zones on the ship model. To resolve the local flow-fields, LDA and PIV measurements were carried out in a selected number of measuring sections. Subsequently, the EFD and CFD results for the global and local flow structures were compared and analyzed. The numerical simulations were carried out by 5 institutions: Iowa Institute of Hydraulic Research of the University of Iowa (IIHR), USA, Maritime Research Institute Netherlands (MARIN), The Netherlands, Hamburg University of Technology (TUHH), Germany, Naval Surface Warfare Center, Carderock Division (NSWCCD) West Bethesda, USA and Swedish Defense Research Agency (FOI), Sweden. For the comparison with the experimental results, seven submissions of steady and unsteady CFD results are included in the present study. The participating codes include CFDShip-Iowa, ReFRESCO, FreSCo+, Edge, OpenFOAM (FOI) and NavyFoam. The size of the computational grids varies between 11 and 202 million control volumes or nodes. The influence of turbulence modeling on the predicted flow is studied by a wide variety of models such as isotropic eddy viscosity models of k-w family, Explicit Algebraic Reynolds Stress Model (EARSM), hybrid RANS-LES (DES), and LES. Despite notable differences in the grid resolutions, numerical methods, and turbulence models, the global features of the flow are closely captured by the computations. Noticeable differences among the computations are found in the details of the local flow such as the vortex strength and the location and extent of the flow separations.


Author(s):  
Jan Vidar Grindheim ◽  
Inge Revhaug ◽  
Egil Pedersen ◽  
Peder Solheim

Towed marine seismic streamers are extensively utilized for petroleum exploration. With the increasing demand for efficiency, leading to longer and more densely spaced streamers, as well as four-dimensional (4D) surveys and more complicated survey configurations, the demand for optimal streamer steering has increased significantly. Accurate streamer state prediction is one important aspect of efficient streamer steering. In the present study, the ensemble Kalman filter (EnKF) has been used with two different models for data assimilation including parameter estimation followed by position prediction. The data used are processed position data for a seismic streamer at the very start of a survey line with particularly large cable movements due to currents. The first model is a partial differential equation (PDE) model reduced to two-dimensional (2D), solved using a finite difference method (FDM). The second model is based on a path-in-the-water (PIW) model and includes a drift angle. Prediction results using various settings are presented for both models. A variant of the PIW method gives the overall best results for the present data.


Abstract. In April 2016, Kumamoto earthquake occurred in Japan and many wooden houses collapsed and many lives were lost because of the second and larger main shock. As a result, the need for Structural Health Monitoring (SHM) for wooden houses is receiving increased attention. In the SHM system, maximum inter-story drift angle is considered as the damage index. We assume that the first story of a wooden house will be damaged so that we need only to focus on the response of this first story. Hence, we install accelerometers on the ground floor and the second floor. In order to estimate the inter-story drift angle, we need to integrate the acceleration records twice. The simple double integration will result in erroneous results. Thus, in this paper, we propose the most appropriate integration method to estimate the maximum story drift angle with high accuracy using two accelerometers.


2021 ◽  
Vol 158 (A4) ◽  
Author(s):  
J Chen ◽  
Z J Zou ◽  
M Chen ◽  
H M Wang

Ships tend to maneuver in oblique motion at low speed in situations such as turning in a harbor, or during offloading, dynamic positioning and mooring processes. The maneuverability criteria proposed by IMO are valid for ships sailing with relatively high speeds and small drift angles, which are inadequate to predict ship maneuverability in low speed condition. Hydrodynamic performance of ships maneuvering at low speed is needed to know for safety issues. A CFD-based method is employed to predict the flow around an Esso Osaka bare hull model in oblique motion at low speed, where the drift angle varies from 0° to 180°. The URANS method with the SST k-ω model is used for simulating ship flows with drift angles 0°~30° and 150°~180°, and DES method for simulating ship flows with drift angles 40°~150°. Verification and validation studies are conducted for drift angles of 0° and 70°. The vortex structures at typical drift angles of 0°, 30°, 50°, 70°, 90° and 180° are analyzed. The effects of drift angle and ship speed are demonstrated.


2016 ◽  
Vol 18 (1) ◽  
pp. 137-146 ◽  
Author(s):  
D. Kim ◽  
T. Kang ◽  
M. Soh ◽  
J. Kwon ◽  
T. Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document