Extensional flow of liquid jets formed by bubble collapse in oils under cavitation-generated pressure waves

2004 ◽  
Vol 36 (3) ◽  
pp. 463-472 ◽  
Author(s):  
M. S. Barrow ◽  
S. W. J. Brown ◽  
P. R. Williams
2004 ◽  
Vol 126 (2) ◽  
pp. 162-169 ◽  
Author(s):  
M. S. Barrow ◽  
S. W. J. Brown ◽  
S. Cordy ◽  
P. R. Williams ◽  
R. L. Williams

We report a study of liquid jets formed by the collapse of bubbles under cavitation-generated pressure waves. Such jets involve an extensional flow which is characterized by high rates of extension, the latter being relevant to considerations of the flow of oils within dynamically loaded journal bearings. The technique reported here is found to be sensitive to the influence of extremely small concentrations of high molecular weight polymeric additive (xanthan gum). Commercial multigrade oils are also found to exhibit significantly larger resistance to extensional flow than their Newtonian counterparts and, insofar as the multigrade oils studied here are made viscoelastic by polymer additives, and possess significant levels of resistance to extension, the results provide evidence in support of a mitigating effect of viscoelasticity on cavitation, as mooted by Berker et al. [3].


2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.


2014 ◽  
Vol 566 ◽  
pp. 26-33 ◽  
Author(s):  
Masatoshi Futakawa

Innovative researches using neutrons are being performed at the Materials & Life Science Experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed as MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment when the intense proton beam hits the target, pressure waves are generated in mercury because of abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall, i.e. the interface between liquid and solid metals. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. The pitting damage that degrades the structural integrity of the target vessel is a crucial issue for the high power mercury targets. Therefore, the mitigation techniques for the pitting damages and cavitation are needed to reach the MW-class pulsed spallation neutron sources.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
R. Fortes-Patella ◽  
G. Challier ◽  
J. L. Reboud ◽  
A. Archer

An original approach based on energy balance between vapor bubble collapse, emitted pressure wave, and neighboring solid wall response was proposed, developed, and tested to estimate the aggressiveness of cavitating flows. In the first part of the work, to improve a prediction method for cavitation erosion (Fortes-Patella and Reboud, 1998, “A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng., 120(2), pp. 335–344; Fortes-Patella and Reboud, 1998, “Energetical Approach and Impact Efficiency in Cavitation Erosion,” Proceedings of Third International Symposium on Cavitation, Grenoble, France), we were interested in studying the pressure waves emitted during bubble collapse. The radial dynamics of a spherical vapor/gas bubble in a compressible and viscous liquid was studied by means of Keller's and Fujikawa and Akamatsu's physical models (Prosperetti, 1994, “Bubbles Dynamics: Some Things we did not Know 10 Years Ago,” Bubble Dynamics and Interface Phenomena, Blake, Boulton-Stone, Thomas, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 3–15; Fujikawa and Akamatsu, 1980, “Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid,” J. Fluid Mech., 97(3), pp. 481–512). The pressure amplitude, the profile, and the energy of the pressure waves emitted during cavity collapses were evaluated by numerical simulations. The model was validated by comparisons with experiments carried out at Laboratoire Laser, Plasma et Procédés Photoniques (LP3-IRPHE) (Marseille, France) with laser-induced bubble (Isselin et al., 1998, “Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser,” Proceedings of Third International Symposium on Cavitation, Grenoble, France; Isselin et al., 1998, “On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys., 84(10), pp. 5766–5771). The efficiency of the first collapse ηwave/bubble (defined as the ratio between pressure wave energy and initial bubble potential energy) was evaluated for different bubble collapses. For the cases considered of collapse in a constant-pressure field, the study pointed out the strong influence of the air contents on the bubble dynamics, on the emitted pressure wave characteristics, and on the collapse efficiency. In the second part of the study, the dynamic response and the surface deformation (i.e., pit profile and pit volume) of various materials exposed to pressure wave impacts was simulated making use of a 2D axisymmetric numerical code simulating the interaction between pressure wave and an elastoplastic solid. Making use of numerical results, a new parameter β (defined as the ratio between the pressure wave energy and the generated pit volume) was introduced and evaluated for three materials (aluminum, copper, and stainless steel). By associating numerical simulations and experimental results concerning pitted samples exposed to cavitating flows (volume damage rate), the pressure wave power density and the flow aggressiveness potential power were introduced. These physical properties of the flow characterize the cavitation intensity and can be related to the flow hydrodynamic conditions. Associated to β and ηwave/bubble parameters, these power densities appeared to be useful tools to predict the cavitation erosion power.


1971 ◽  
Vol 93 (4) ◽  
pp. 470-477 ◽  
Author(s):  
F. F. Tao ◽  
J. K. Appledoorn

The effect of liquid properties and the atmospheric environment on cavitation erosion was investigated in a thin film cavitation apparatus which consists of an ultrasonic horn with a flat tip vibrating against a stationary 1/2 in. ball at a frequency of 20 KC. The experimental results show that cavitation erosion is less severe for liquids of higher gas solubility or at vapor pressures greater than 100 torr. It is therefore possible to reduce the damage by blending a light component in lubricants or liquids and/or by environmental control. The effect of ambient pressure was also observed by tests in vacuum and under various reduced pressures up to one atmosphere. The damage increases with the increase of pressure. These results indicate that the most important factor in cavitation erosion is the differential pressure inside and outside the cavities, with the dissolved gases and/or vapor serving to control this pressure differential. The investigation of cavitation erosion with liquids of various properties also provides information for the understanding of the erosion mechanism. Evidence was obtained which supports the theory that the damage is caused by fatigue failure attributable to the impingement of liquid jets during bubble collapse. The liquid properties may control the jets velocity and thus affect the applied stress on surface boundaries.


Author(s):  
P. Rhodri Williams ◽  
Matthew S. Barrow ◽  
Stephen Cordy ◽  
Karl Hawkins

We report experimental work involving the rapid uniaxial elongation of jets of mobile (i.e. low shear viscosity) liquids formed by the collapse of a gas bubble under a cavitation-generated shockwave. The results of this work establish that the jets experience a significant degree of extensional deformation, at high rates of extension (typically > 1000 s−1) which are relevant to considerations of journal bearing lubrication. The results of experiments conducted on samples of commercial multigrade motor lubricants in the 15W40 category indicate a substantially increased resistance to extensional flow when compared with the behaviour of their Newtonian counterparts. Interestingly, the technique is able to distinguish between the rheological properties of lubricants of identical category (15W40) which are formulated for use in different engines (petrol engine and diesel engine, respectively). The lubricant formulated for the latter application is found to exhibit the highest resistance to extensional flow.


2000 ◽  
Vol 122 (3) ◽  
pp. 465-470 ◽  
Author(s):  
K. M. Kalumuck ◽  
G. L. Chahine

Exposure to ultrasonic acoustic waves can greatly enhance various chemical reactions. Ultrasonic acoustic irradiation of organic compounds in aqueous solution results in oxidation of these compounds. The mechanism producing this behavior is the inducement of the growth and collapse of cavitation bubbles driven by the high frequency acoustic pressure fluctuations. Cavitation bubble collapse produces extremely high local pressures and temperatures. Such conditions are believed to produce hydroxyl radicals which are strong oxidizing agents. We have applied hydrodynamic cavitation to contaminated water by the use of submerged cavitating liquid jets to trigger widespread cavitation and induce oxidation in the bulk solution. Experiments were conducted in recirculating flow loops using a variety of cavitating jet configurations and operating conditions with dilute aqueous solutions of p-nitrophenol (PNP) of known concentration. Temperature, pH, ambient and jet pressures, and flow rates were controlled and systematically varied. Samples of the liquid were taken and the concentration of PNP measured with a spectrophotometer. Experiments were conducted in parallel with an ultrasonic horn for comparison. Submerged cavitating liquid jets were found to generate a two order of magnitude increase in energy efficiency compared to the ultrasonic means. [S0098-2202(00)00303-5]


Sign in / Sign up

Export Citation Format

Share Document