Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

2017 ◽  
Vol 58 (12) ◽  
Author(s):  
Colin M. Parker ◽  
Daniel B. Araya ◽  
Megan C. Leftwich
2018 ◽  
Vol 174 ◽  
pp. 303-311 ◽  
Author(s):  
Hawwa Kadum ◽  
Sasha Friedman ◽  
Elizabeth H. Camp ◽  
Raúl Bayoán Cal

Author(s):  
Jie Su ◽  
Yaoran Chen ◽  
Dai Zhou ◽  
Zhaolong Han ◽  
Yan Bao

Abstract The vertical axis wind turbine (VAWT) is considered an important device to utilize the renewable and sustainable wind energy. However, the relatively lower power coefficient has hampered its development. Therefore, this paper attempts to investigate the effect of swept blade employed in a VAWT on the enhancement in aerodynamic performance. A series of swept blades were studied in a small VAWT rotor, and the RANS SST k-ω turbulence model was utilized to simulate the flow field. The numerical model was validated against experimental data, and the aerodynamic performance was investigated with respect to force coefficients, vorticity distribution, static pressure distribution, and wind turbine wake, respectively. The results indicated that the swept blade could effectively increase power outputs by about 20% for the wind turbine. By reducing the drag coefficient, a high lift-drag ratio was achieved. And this configuration prevented the blade from suffering severe dynamic stall. Besides, the swept blade changed the distribution of low wind speed area in the wind turbine wake, which should be considered in the wind farm. It was concluded that this work provided a new way for the practical design and optimization of wind turbine.


2019 ◽  
Vol 44 (5) ◽  
pp. 494-508 ◽  
Author(s):  
Eric B Tingey ◽  
Andrew Ning

Analyzing or optimizing wind farm layouts often requires reduced-order wake models to estimate turbine wake interactions and wind velocity. We propose a wake model for vertical-axis wind turbines in streamwise and crosswind directions. Using vorticity data from computational fluid dynamic simulations and cross-validated Gaussian distribution fitting, we produced a wake model that can estimate normalized wake velocity deficits of an isolated vertical-axis wind turbine using normalized downstream and lateral positions, tip-speed ratio, and solidity. Compared with computational fluid dynamics, taking over a day to run one simulation, our wake model predicts a velocity deficit in under a second with an appropriate accuracy and computational cost necessary for wind farm optimization. The model agreed with two experimental studies producing percent differences of the maximum wake deficit of 6.3% and 14.6%. The wake model includes multiple wake interactions and blade aerodynamics to calculate power, allowing its use in wind farm layout analysis and optimization.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2017 ◽  
Author(s):  
Prof. R.K. Bhoyar ◽  
Prof. S.J. Bhadang ◽  
Prof. N.Z. Adakane ◽  
Prof. N.D. Pachkawade

Author(s):  
Antonio Neiva ◽  
Vanessa Guedes ◽  
Caio Leandro Suzano Massa ◽  
Daniel Davy Bello de Freitas

Sign in / Sign up

Export Citation Format

Share Document