The significant relationship between the Arctic Oscillation (AO) in December and the January climate over South China

2011 ◽  
Vol 28 (2) ◽  
pp. 398-407 ◽  
Author(s):  
Hui Yang
2020 ◽  
Author(s):  
Tianyun Dong ◽  
Wenjie Dong ◽  
Taichen Feng ◽  
Xian Zhu

Abstract The reversed impacts of the Arctic oscillation (AO) on precipitation over the South China Sea and its surrounding areas (SCSA) in October and November during 1979–2014 are investigated. The correlation coefficients between AO and the precipitation in October and November are 0.44 and − 0.31, which are statistically significant at the 99% and 90% confidence levels, respectively. In October (November), the specific humidity exhibits obvious positive (negative) anomalies in the SCSA, and an upward (downward) airflow moving from ground to the upper troposphere (1000–150 hPa) between 10°N and 30°N (10°N and 20°N) is observed with more (less) cloud cover. Moisture budget diagnosis suggests that the precipitation’s increasing (decreasing) in October (November) mainly contributed by zonal moisture flux convergence (divergence). Furthermore, the Rossby wave guided by westerlies tends to motivate positive geopotential height in the upper troposphere over approximately 20°–30°N, 40°–80°E in October, which is accompanied by a stronger anticyclone in the Arabian Sea region. However, in November, the wave train propagating from the Arabian Sea to the Bay of Bengal is observed in the form of cyclones and anticyclones. Further analysis reveal that the AO in October may increase precipitation through the southern wave train (along the westerly jet stream from North Africa to the Middle East and South China). Moreover, air-sea interactions over the North Pacific might also generate horseshoe-shaped sea surface temperature (SST) anomalies characterized by positive SST in the central subtropical North Pacific surrounded by negative SST, which may affect the precipitation in the SCSA. Ensemble-mean results from CMIP6 historical simulations further confirm these relationships, and the models that can better simulate the observed positive geopotential height in the Arabian Sea present more consistent precipitation’s increasing over the SCSA in October.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2021 ◽  
pp. 5-16
Author(s):  
V. N. Kryjov ◽  

The 2019/2020 wintertime (December–March) anomalies of sea level pressure, temperature, and precipitation are analyzed. The contribution of the 40-year linear trend in these parameters associated with global climate change and of the interannual variability associated with the Arctic Oscillation (AO) is assessed. In the 2019/2020 winter, extreme zonal circulation was observed. The mean wintertime AO index was 2.20, which ranked two for the whole observation period (started in the early 20th century) and was outperformed only by the wintertime index of 1988/1989. It is shown that the main contribution to the 2019/2020 wintertime anomalies was provided by the AO. A noticeable contribution of the trend was observed only in the Arctic. Extreme anomalies over Northern Eurasia were mainly associated with the AO rather than the trend. However, the AO-related anomalies, particularly air temperature anomalies, were developing against the background of the trend-induced increased mean level.


Sign in / Sign up

Export Citation Format

Share Document