scholarly journals Reversed impacts of the Arctic oscillation on the precipitation over the South China Sea and its surrounding areas in October and November

2020 ◽  
Author(s):  
Tianyun Dong ◽  
Wenjie Dong ◽  
Taichen Feng ◽  
Xian Zhu

Abstract The reversed impacts of the Arctic oscillation (AO) on precipitation over the South China Sea and its surrounding areas (SCSA) in October and November during 1979–2014 are investigated. The correlation coefficients between AO and the precipitation in October and November are 0.44 and − 0.31, which are statistically significant at the 99% and 90% confidence levels, respectively. In October (November), the specific humidity exhibits obvious positive (negative) anomalies in the SCSA, and an upward (downward) airflow moving from ground to the upper troposphere (1000–150 hPa) between 10°N and 30°N (10°N and 20°N) is observed with more (less) cloud cover. Moisture budget diagnosis suggests that the precipitation’s increasing (decreasing) in October (November) mainly contributed by zonal moisture flux convergence (divergence). Furthermore, the Rossby wave guided by westerlies tends to motivate positive geopotential height in the upper troposphere over approximately 20°–30°N, 40°–80°E in October, which is accompanied by a stronger anticyclone in the Arabian Sea region. However, in November, the wave train propagating from the Arabian Sea to the Bay of Bengal is observed in the form of cyclones and anticyclones. Further analysis reveal that the AO in October may increase precipitation through the southern wave train (along the westerly jet stream from North Africa to the Middle East and South China). Moreover, air-sea interactions over the North Pacific might also generate horseshoe-shaped sea surface temperature (SST) anomalies characterized by positive SST in the central subtropical North Pacific surrounded by negative SST, which may affect the precipitation in the SCSA. Ensemble-mean results from CMIP6 historical simulations further confirm these relationships, and the models that can better simulate the observed positive geopotential height in the Arabian Sea present more consistent precipitation’s increasing over the SCSA in October.

2017 ◽  
Vol 30 (8) ◽  
pp. 2905-2919 ◽  
Author(s):  
Jiankai Zhang ◽  
Fei Xie ◽  
Wenshou Tian ◽  
Yuanyuan Han ◽  
Kequan Zhang ◽  
...  

The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.


2011 ◽  
Vol 24 (1) ◽  
pp. 68-83 ◽  
Author(s):  
Tae-Won Park ◽  
Chang-Hoi Ho ◽  
Song Yang

Abstract The present study reveals the changes in the characteristics of cold surges over East Asia associated with the Arctic Oscillation (AO). Based on circulation features, cold surges are grouped into two general types: wave train and blocking types. The blocking type of cold surge tends to occur during negative AO periods, that is, the AO-related polarity of the blocking type. However, the wave train type is observed during both positive and negative AO periods, although the wave train features associated with negative AO are relatively weaker. The cold surges during negative AO are stronger than those during positive AO in terms of both amplitude and duration. The cold surges during positive AO in which the extent of effect is confined to inland China passes through East Asia quickly because of weaker Siberian high and Aleutian low, leading to short duration of these cold surges. In contrast, the cold surge during negative AO, characterized by a well-organized anticyclone–cyclone couplet with high pressure over continental East Asia and low pressure over Japan, brings continuous cold air into the entire East Asian region for more than one week with long-lasting cold advection. It is also found that the tracks of the cold surges during negative AO tend to occur more frequently over Korea and Japan and less frequently over China, compared with those during positive AO. The tracks are related to a west–east dipole structure of the ratio of rain conversion to snow according to AO phase, resulting in freezing precipitation or snowfall events over inland China (Korea and Japan) are likely to occur more frequently during the positive (negative) AO periods.


2019 ◽  
Vol 32 (8) ◽  
pp. 2295-2311 ◽  
Author(s):  
Lei Song ◽  
Renguang Wu

AbstractThe present study reveals that the Madden–Julian oscillation (MJO)-related temperature anomalies over East Asia have notable differences among positive, neutral, and negative Arctic Oscillation (AO) phases. In MJO phases 2–3, cold anomalies over eastern China occur mainly during positive AO. In MJO phase 7, warm anomalies over eastern China are observed mostly during neutral AO, and in MJO phase 8 warm anomalies appear in positive and neutral AO. Regional mean temperature anomalies over northeastern East Asia tend to be negative during negative AO but positive during positive AO in six of eight MJO phases. In MJO phases 2–3, the AO-related mid- to high-latitude wave train over Eurasia and the MJO convection-triggered poleward wave train work together in contributing to negative height anomalies over eastern China and leading to cold anomalies there. The mid- to high-latitude wave train is stronger when the AO is negative than positive, which is associated with stronger zonal winds. In MJO phases 7–8, the positive AO-related mid- to high-latitude wave train over Eurasia and the MJO-induced poleward wave train cooperate in inducing positive height anomalies and leading to warm anomalies over eastern China. The mid- to high-latitude wave train is the main contributor to negative height anomalies over eastern China when the AO is negative during MJO phases 7–8. Meanwhile, the intensity of the South Asian wave source associated with the MJO convection is subjected to the modulation of southeastward dispersion of wave energy from western Europe during negative AO.


2017 ◽  
Vol 30 (14) ◽  
pp. 5563-5584 ◽  
Author(s):  
Panxi Dai ◽  
Benkui Tan

Through a cluster analysis of daily NCEP–NCAR reanalysis data, this study demonstrates that the Arctic Oscillation (AO), defined as the leading empirical orthogonal function (EOF) of 250-hPa geopotential height anomalies, is not a unique pattern but a continuum that can be well approximated by five discrete, representative AO-like patterns. These AO-like patterns grow simultaneously from disturbances in the North Pacific, the North Atlantic, and the Arctic, and both the feedback from the high-frequency eddies in the North Pacific and North Atlantic and propagation of the low-frequency wave trains from the North Pacific across North America into the North Atlantic play important roles in the pattern formation. Furthermore, it is shown that the structures and frequencies of occurrence of the five AO-like patterns are significantly modulated by El Niño–Southern Oscillation (ENSO). Warm (cold) ENSO enhances the negative (positive) AO phase, compared with ENSO neutral winters. Finally, the surface weather effects of these AO-like patterns and their implications for the AO-related weather prediction and the AO-North Atlantic Oscillation (NAO) relationship are discussed.


2009 ◽  
Vol 22 (11) ◽  
pp. 3110-3126 ◽  
Author(s):  
Hongxu Zhao ◽  
G. W. K. Moore

Abstract Although the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) have been identified as important modes of climate variability during the Northern Hemisphere (NH) winter, whether the AO or the NAO is more fundamental to the description of this variability, especially in the North Pacific, is still an open question. An important contributor to this uncertainty is the lack of knowledge of the low-frequency linkages between the North Atlantic and North Pacific Oceans. This paper explores the linkage between the two oceanic basins on interdecadal time scales using the sea level pressure (SLP) field during the twentieth century. In particular, it is shown that the winter mean SLP in the North Pacific was positively correlated with the sign of the NAO during the periods of 1925–50 and 1980–98, which resulted in the classical AO pattern being the dominant mode in the NH. In contrast, during the period of 1951–79, the winter mean SLP in the two basins was decoupled, resulting in a dominant mode that more closely resembled the NAO. Using paleoclimate reconstructions, it is also shown that this interdecadal variability in the North Pacific climate began around 1850, which is nominally considered to be the end of the Little Ice Age.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 175 ◽  
Author(s):  
Lei Song ◽  
Renguang Wu

Previous studies have revealed the relationship between the Madden–Julian oscillation (MJO) and the Arctic Oscillation (AO). The MJO phase 2/3 is followed by the positive AO phase, and the MJO phase 6/7 is followed by the negative AO phase. This study reveals that the MJO phase 6/7–AO connection is modulated by the Quasi-Biennial Oscillation (QBO) through both tropospheric and stratospheric pathways during boreal winter. The MJO 2/3 phase and AO relationship is favored in both QBO easterly (QBOE) and westerly (QBOW) years because of the MJO-triggered tropospheric Rossby wave train from the tropics toward the polar region. The AO following the MJO 6/7 phase shifts to negative in QBOW years, but the MJO–AO connection diminishes in QBOE years. In QBOW years, the Asian-Pacific jet is enhanced, leading to more evident poleward propagation of tropospheric Rossby wave train, which contributes to the tropospheric pathway of the AO–MJO 6/7 connection. Besides, the enhanced Asian-Pacific jet in QBOW years is favorable for vertical propagation of planetary waves into the stratosphere in MJO phase 6/7, leading to negative AO, which indicates the stratospheric pathway of the AO–MJO 6/7 connection.


2012 ◽  
Vol 25 (12) ◽  
pp. 4242-4257 ◽  
Author(s):  
Ho Nam Cheung ◽  
Wen Zhou ◽  
Hing Yim Mok ◽  
Man Chi Wu

Abstract This study attempts to assess the possible linkage between Ural–Siberian blocking and the East Asian winter monsoon (EAWM). During the boreal winter, the dominance of blocking thermally enhances cold advection downstream. The frequent occurrence of Ural–Siberian blocking potentially promotes a cold EAWM and vice versa. The seasonal blocking activity can be regarded as the combined effect of the Arctic Oscillation (AO) and the El Niño–Southern Oscillation (ENSO). Weakened (strengthened) meridional flow in the positive (negative) phase of the AO is unfavorable (favorable) for the formation of blocking highs. Because the AO shows a close relationship with the North Atlantic Oscillation (NAO), its teleconnection with Ural–Siberian blocking may exist in the form of an eastward-propagating wave train. Be that as it may, the wave train signal across East Asia may be disturbed by the external effect of a strong ENSO event, which probably enhances (weakens) the westerlies near Siberia in its warm (cold) phase. Consequently, the blocking–EAWM relationship is stronger (weaker) when the AO and ENSO are in phase (out of phase). If both AO and ENSO attain the positive (negative) phase, the Siberian high tends to be weaker (stronger) and the temperature tends to be higher (lower) in East Asia, with less (more) Ural–Siberian blocking. On the other hand, if they are out of phase, they are not strongly linked to the intensity of the Siberian high, and the blocking activity over Ural–Siberia is unclear.


Sign in / Sign up

Export Citation Format

Share Document