scholarly journals Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM)

2015 ◽  
Vol 32 (5) ◽  
pp. 585-600 ◽  
Author(s):  
Jian Cao ◽  
Bin Wang ◽  
Baoqiang Xiang ◽  
Juan Li ◽  
Tianjie Wu ◽  
...  
2019 ◽  
Vol 54 (1-2) ◽  
pp. 793-806 ◽  
Author(s):  
Jonathan Eliashiv ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller

AbstractA new prototype coupled ocean–atmosphere Ensemble Kalman Filter reanalysis product, the Community Earth System Model using the Data Assimilation Research Testbed (CESM-DART), is studied by comparing its tropical climate variability to other reanalysis products, available observations, and a free-running version of the model. The results reveal that CESM-DART produces fields that are comparable in overall performance with those of four other uncoupled and coupled reanalyses. The clearest signature of differences in CESM-DART is in the analysis of the Madden–Julian Oscillation (MJO) and other tropical atmospheric waves. MJO energy is enhanced over the free-running CESM as well as compared to the other products, suggesting the importance of the surface flux coupling at the ocean–atmosphere interface in organizing convective activity. In addition, high-frequency Kelvin waves in CESM-DART are reduced in amplitude compared to the free-running CESM run and the other products, again supportive of the oceanic coupling playing a role in this difference. CESM-DART also exhibits a relatively low bias in the mean tropical precipitation field and mean sensible heat flux field. Conclusive evidence of the importance of coupling on data assimilation performance will require additional detailed direct comparisons with identically formulated, uncoupled data assimilation runs.


2020 ◽  
Author(s):  
Yi-Chi Wang ◽  
Huang-Hsiung Hsu ◽  
Chao-An Chen ◽  
Wan-Ling Tseng ◽  
Pei-Chun Hsu ◽  
...  

2020 ◽  
Vol 55 (9-10) ◽  
pp. 2523-2541
Author(s):  
Shangfeng Chen ◽  
Bin Yu

Abstract Previous studies indicated that the wintertime North Pacific Oscillation (NPO) could exert marked impacts on the following winter El Niño-Southern Oscillation (ENSO) via the seasonal footprinting mechanism (SFM). Here, we examine this winter NPO-ENSO relationship in a 50-member ensemble of historical simulations conducted with the Canadian Centre for Climate Modeling and Analysis second generation Canadian Earth System Model (CanESM2) over the period of 1950–2005. The observed NPO pattern, featured by a meridional dipole atmospheric anomaly over the North Pacific, can be well reproduced by all of the 50 ensemble members. The multi-member ensemble (MME) mean can well simulate the observed NPO-ENSO relationship, as well as the SFM process. However, there exists a large spread of the results among the 50 members due to internal climate variability. Internal climate variability influences the winter NPO-ENSO relationship through modulating the subtropical center of the NPO. Specifically, the ensemble members with high NPO-ENSO correlations tend to have strong atmospheric anomalies over the subtropical North Pacific in winter. The atmospheric circulation anomaly brings strong sea surface temperature and precipitation anomalies in the tropical central Pacific and westerly wind anomalies over the tropical western Pacific in the following spring. These anomalies sustain in the following seasons and eventually lead to ENSO events in the following winter.


2020 ◽  
Author(s):  
André Jüling ◽  
Anna von der Heydt ◽  
Henk A. Dijkstra

Abstract. Climate variability on multidecadal time scales appears to be organized in pronounced patterns with clear expressions in sea surface temperature, such as the Atlantic Multidecadal Variability and the Pacific Decadal Oscillation. These patterns are now well studied both in observations and global climate models and are important in the attribution of climate change. Results from CMIP5 models have indicated large biases in these patterns with consequences for ocean heat storage variability and eventually the global mean surface temperature. In this paper, we use two multi-century Community Earth System Model simulations at coarse (1°) and fine (0.1°) ocean model horizontal grid spacing to study the effects of the representation of mesoscale ocean flows on major patterns of multidecadal variability. We find that resolving mesoscale ocean flows both improves the characteristics of the modes of variability with respect to observations and increases the amplitude of the heat content variability in the individual ocean basins. The effect on the global mean surface temperature is relatively minor.


2016 ◽  
Vol 97 (5) ◽  
pp. 735-754 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
John Fasullo ◽  
Alexandra Jahn ◽  
Laura Landrum ◽  
...  

Abstract The climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, as well as providing a longer-term perspective for understanding events in the modern instrumental period. It also constitutes a dynamically consistent framework within which to diagnose mechanisms of regional variability. Results demonstrate an important influence of internal variability on regional responses of the climate system during the past millennium. All the forcings, particularly large volcanic eruptions, are found to be regionally influential during the preindustrial period, while anthropogenic greenhouse gas and aerosol changes dominate the forced variability of the mid- to late twentieth century.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1045
Author(s):  
Luciana F. Prado ◽  
Ilana Wainer ◽  
Ronald B. de Souza

The Southern Annular Mode (SAM, also known as the Antarctic Oscillation—AAO) explains most of the climate variability in the Southern Hemisphere. A ring pattern in mean sea level pressure (MSLP) or 500 hPa geopotential height around Antarctica characterizes SAM. Differences of MSLP values between SH mid and high latitudes define positive and negative SAM phases with impacts on mean atmospheric circulation. Thus, investigating how different models represent SAM is of paramount importance, as it can improve their ability to describe or even predict most of the SH climate variability. Here we examine how the Brazilian Earth System Model (BESM) represents SAM’s signal compared with observations, reanalysis, and other climate models contributing to the Coupled Modeling Intercomparison Project version 5 (CMIP5). We also evaluate how SAM relates to the South American surface temperature and precipitation and discuss the models’ limitations and biases compared with reanalysis data.


Sign in / Sign up

Export Citation Format

Share Document