A Two-plume Convective Model for Precipitation Extremes

Author(s):  
Zihan Yin ◽  
Panxi Dai ◽  
Ji Nie
2021 ◽  
Vol 13 (7) ◽  
pp. 1230
Author(s):  
Simeng Wang ◽  
Qihang Liu ◽  
Chang Huang

Changes in climate extremes have a profound impact on vegetation growth. In this study, we employed the Moderate Resolution Imaging Spectroradiometer (MODIS) and a recently published climate extremes dataset (HadEX3) to study the temporal and spatial evolution of vegetation cover, and its responses to climate extremes in the arid region of northwest China (ARNC). Mann-Kendall test, Anomaly analysis, Pearson correlation analysis, Time lag cross-correlation method, and Least absolute shrinkage and selection operator logistic regression (Lasso) were conducted to quantitatively analyze the response characteristics between Normalized Difference Vegetation Index (NDVI) and climate extremes from 2000 to 2018. The results showed that: (1) The vegetation in the ARNC had a fluctuating upward trend, with vegetation significantly increasing in Xinjiang Tianshan, Altai Mountain, and Tarim Basin, and decreasing in the central inland desert. (2) Temperature extremes showed an increasing trend, with extremely high-temperature events increasing and extremely low-temperature events decreasing. Precipitation extremes events also exhibited a slightly increasing trend. (3) NDVI was overall positively correlated with the climate extremes indices (CEIs), although both positive and negative correlations spatially coexisted. (4) The responses of NDVI and climate extremes showed time lag effects and spatial differences in the growing period. (5) Precipitation extremes were closely related to NDVI than temperature extremes according to Lasso modeling results. This study provides a reference for understanding vegetation variations and their response to climate extremes in arid regions.


2021 ◽  
Vol 13 (12) ◽  
pp. 6910
Author(s):  
Adil Dilawar ◽  
Baozhang Chen ◽  
Arfan Arshad ◽  
Lifeng Guo ◽  
Muhammad Irfan Ehsan ◽  
...  

Here, we provided a comprehensive analysis of long-term drought and climate extreme patterns in the agro ecological zones (AEZs) of Pakistan during 1980–2019. Drought trends were investigated using the standardized precipitation evapotranspiration index (SPEI) at various timescales (SPEI-1, SPEI-3, SPEI-6, and SPEI-12). The results showed that droughts (seasonal and annual) were more persistent and severe in the southern, southwestern, southeastern, and central parts of the region. Drought exacerbated with slopes of −0.02, −0.07, −0.08, −0.01, and −0.02 per year. Drought prevailed in all AEZs in the spring season. The majority of AEZs in Pakistan’s southern, middle, and southwestern regions had experienced substantial warming. The mean annual temperature minimum (Tmin) increased faster than the mean annual temperature maximum (Tmax) in all zones. Precipitation decreased in the southern, northern, central, and southwestern parts of the region. Principal component analysis (PCA) revealed a robust increase in temperature extremes with a variance of 76% and a decrease in precipitation extremes with a variance of 91% in the region. Temperature and precipitation extremes indices had a strong Pearson correlation with drought events. Higher temperatures resulted in extreme drought (dry conditions), while higher precipitation levels resulted in wetting conditions (no drought) in different AEZs. In most AEZs, drought occurrences were more responsive to precipitation. The current findings are helpful for climate mitigation strategies and specific zonal efforts are needed to alleviate the environmental and societal impacts of drought.


Icarus ◽  
2011 ◽  
Vol 214 (2) ◽  
pp. 685-700 ◽  
Author(s):  
Angela M. Zalucha ◽  
Xun Zhu ◽  
Amanda A.S. Gulbis ◽  
Darrell F. Strobel ◽  
J.L. Elliot

2013 ◽  
Vol 116 (3-4) ◽  
pp. 447-461 ◽  
Author(s):  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Mingzhong Xiao ◽  
Vijay P. Singh ◽  
Yee Leung ◽  
...  

2020 ◽  
Author(s):  
Jeong-Soo Park ◽  
Yonggwan Shin ◽  
Yire Shin ◽  
Juyoung Hong ◽  
Maeong-Ki Kim ◽  
...  

1982 ◽  
Vol 39 (9) ◽  
pp. 2038-2050 ◽  
Author(s):  
Matthew C. G. Hall ◽  
Dan G. Cacuci ◽  
Michael E. Schlesinger

Sign in / Sign up

Export Citation Format

Share Document