Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF

2010 ◽  
Vol 36 (5-6) ◽  
pp. 1083-1105 ◽  
Author(s):  
Emmanouil Flaounas ◽  
Sophie Bastin ◽  
Serge Janicot
Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Ibrahima Diba ◽  
Moctar Camara ◽  
Arona Diedhiou

This study investigates the changes in West African monsoon features during warm years using the Regional Climate Model version 4.5 (RegCM4.5). The analysis uses 30 years of datasets of rainfall, surface temperature and wind parameters (from 1980 to 2009). We performed a simulation at a spatial resolution of 50 km with the RegCM4.5 model driven by ERA-Interim reanalysis. The rainfall amount is weaker over the Sahel (western and central) and the Guinea region for the warmest years compared to the coldest ones. The analysis of heat fluxes show that the sensible (latent) heat flux is stronger (weaker) during the warmest (coldest) years. When considering the rainfall events, there is a decrease of the number of rainy days over the Guinea Coast (in the South of Cote d’Ivoire, of Ghana and of Benin) and the western and eastern Sahel during warm years. The maximum length of consecutive wet days decreases over the western and eastern Sahel, while the consecutive dry days increase mainly over the Sahel band during the warm years. The percentage of very warm days and warm nights increase mainly over the Sahel domain and the Guinea region. The model also simulates an increase of the warm spell duration index in the whole Sahel domain and over the Guinea Coast in warm years. The analysis of the wind dynamic exhibits during warm years a weakening of the monsoon flow in the lower levels, a strengthening in the magnitude of the African Easterly Jet (AEJ) in the mid-troposphere and a slight increase of the Tropical Easterly Jet (TEJ) in the upper levels of the atmosphere during warm years.


2007 ◽  
Vol 20 (21) ◽  
pp. 5264-5284 ◽  
Author(s):  
Samson M. Hagos ◽  
Kerry H. Cook

Abstract The observed abrupt latitudinal shift of maximum precipitation from the Guinean coast into the Sahel region in June, known as the West African monsoon jump, is studied using a regional climate model. Moisture, momentum, and energy budget analyses are used to better understand the physical processes that lead to the jump. Because of the distribution of albedo and surface moisture, a sensible heating maximum is in place over the Sahel region throughout the spring. In early May, this sensible heating drives a shallow meridional circulation and moisture convergence at the latitude of the sensible heating maximum, and this moisture is transported upward into the lower free troposphere where it diverges. During the second half of May, the supply of moisture from the boundary layer exceeds the divergence, resulting in a net supply of moisture and condensational heating into the lower troposphere. The resulting pressure gradient introduces an inertial instability, which abruptly shifts the midtropospheric meridional wind convergence maximum from the coast into the continental interior at the end of May. This in turn introduces a net total moisture convergence, net upward moisture flux and condensation in the upper troposphere, and an enhancement of precipitation in the continental interior through June. Because of the shift of the meridional convergence into the continent, condensation and precipitation along the coast gradually decline. The West African monsoon jump is an example of multiscale interaction in the climate system, in which an intraseasonal-scale event is triggered by the smooth seasonal evolution of SSTs and the solar forcing in the presence of land–sea contrast.


2009 ◽  
Vol 33 (6) ◽  
pp. 869-892 ◽  
Author(s):  
Allison L. Steiner ◽  
Jeremy S. Pal ◽  
Sara A. Rauscher ◽  
Jason L. Bell ◽  
Noah S. Diffenbaugh ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
F. Solmon ◽  
N. Elguindi ◽  
M. Mallet ◽  
C. Flamant ◽  
P. Formenti

AbstractThe West African Monsoon (WAM) is a complex system depending on global climate influences and multiple regional environmental factors. Central and Southern African biomass-burning (SABB) aerosols have been shown to perturb WAM during episodic northward inter-hemispheric transport events, but a possible dynamical connection between the core of the SABB aerosol outflow and the WAM system remains unexplored. Through regional climate modeling experiments, we show that SABB aerosols can indeed impact WAM dynamics via two competitive regional scale and inter-hemispheric dynamical feedbacks originating from (i) enhanced diabatic heating occurring in the Southeastern Atlantic low-cloud deck region, and (ii) aerosol and cloud-induced sea surface temperature cooling. These mechanisms, related to aerosol direct, semi-direct, and indirect effects, are shown to have different seasonal timings, resulting in a reduction of June to September WAM precipitation, while possibly enhancing late-season rainfall in WAM coastal areas.


2017 ◽  
Vol 12 (15) ◽  
pp. 142-154
Author(s):  
Benjamin KOUASSI K. ◽  
DIAWARA Adama ◽  
Yves KOUADIO K. ◽  
YOROBA Fidele ◽  
TOUALY Elisee

2009 ◽  
Vol 136 (S1) ◽  
pp. 66-76 ◽  
Author(s):  
Kassimou Abdou ◽  
Douglas J. Parker ◽  
Barbara Brooks ◽  
Norbert Kalthoff ◽  
Thierry Lebel

2016 ◽  
Vol 48 (9-10) ◽  
pp. 2837-2858 ◽  
Author(s):  
Cornelia Klein ◽  
Jan Bliefernicht ◽  
Dominikus Heinzeller ◽  
Ursula Gessner ◽  
Igor Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document