A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis

2012 ◽  
Vol 40 (7-8) ◽  
pp. 1611-1624 ◽  
Author(s):  
S. Abhik ◽  
M. Halder ◽  
P. Mukhopadhyay ◽  
X. Jiang ◽  
B. N. Goswami
2019 ◽  
Vol 76 (2) ◽  
pp. 639-668 ◽  
Author(s):  
Qiu Yang ◽  
Boualem Khouider ◽  
Andrew J. Majda ◽  
Michèle De La Chevrotière

AbstractA simple multilayer zonally symmetric model, using a multicloud convective parameterization and coupled to a dynamical bulk atmospheric boundary layer, is used here to simulate boreal summer intraseasonal oscillations (BSISO) in the summer monsoon trough and elucidate the underlying main physical mechanisms responsible for their initiation, propagation, and termination. Northward-moving precipitating events initiated near the equator propagate northward at roughly 1° day−1 and terminate near 20°N. Unlike earlier findings, the northward propagation of precipitation anomalies in this model is due to the propagation of positive moisture anomalies in the northward direction, resulting from an asymmetry in the meridional velocity induced by the beta effect. From a moisture-budget perspective, advection constitutes a biased intrusion of dry air into the convection center, forcing new convection events to form north of the wave disturbance, while moisture convergence supplies the precipitation sink. The BSISO events are initiated near the equator when the competing effects between first-baroclinic divergence and second-baroclinic convergence, induced by the descending branch of the Hadley cell and in situ congestus heating, respectively, become favorable to convective intensification. The termination often near 20°N and halfway stalling of these precipitating events occur when the asymmetry in the first-baroclinic meridional winds weakens and when the negative moisture gradient to the north of the convection center becomes too strong as the anomaly exits the imposed warm pool domain.


2021 ◽  
Author(s):  
Aditya Kottapalli ◽  
Vinayachandran P N

Abstract The northward propagation of intraseasonal oscillations (ISO) is one of the major modes of variability in the tropics during boreal summer, associated with active and break spells of monsoon rainfall over the Indian region, and modulate the Indian summer monsoon rainfall (ISMR). The northward march starts close to the equator over warm waters of the Indian Ocean and continues till the foothills of the Himalayas. The northward propagations tend to be weaker during positive Indian Ocean Dipole (pIOD) years. We have used the "moisture mode" framework to understand the processes responsible for the weakening of northward propagations during IOD years. Our analyses show that moistening caused by the horizontal advection was the major contributor for the northward propagations during negative IOD (nIOD) years, and its amplitude is much smaller during pIOD years. The reduction in the zonal advection during pIOD is responsible for the weakening of northward propagations. Also, the mean structure of entropy between 925hpa – 500hpa levels remained similar over most of the monsoon region across the contrasting IOD years. The reason for weaker northward propagations can be attributed to the weaker zonal wind perturbations at intraseasonal timescales. The weaker zonal wind perturbations during ISO events in pIOD years owing to cooler sea surface temperatures (SST) in the South-East Equatorial Indian Ocean (SEIO) and warmer West Equatorial Indian Ocean (WEIO) and South-East Arabian Sea (SEAS) is proposed to be the possible reason for the weakening of northward propagations during pIOD years.


2020 ◽  
Vol 33 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Shuguang Wang

AbstractCharacteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM) precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the middle of summer corresponding to the BSISO. Comparing the fractional variance indicates that the BSISO is more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMM era (1979–98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two leading EOFs as a function of day of the year. A real-time version that approximates the PII is further developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time PII index may be used to diagnose precipitation in the subseasonal forecasts.


2017 ◽  
Vol 74 (4) ◽  
pp. 1321-1342 ◽  
Author(s):  
Romeo Alexander ◽  
Zhizhen Zhao ◽  
Eniko Székely ◽  
Dimitrios Giannakis

Abstract This paper presents the results of forecasting the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO) through the use of satellite-obtained global brightness temperature data with a recently developed nonparametric empirical method. This new method, referred to as kernel analog forecasting, adopts specific indices extracted using the technique of nonlinear Laplacian spectral analysis as baseline definitions of the intraseasonal oscillations of interest, which are then extended into forecasts through an iterated weighted averaging scheme that exploits the predictability inherent to those indices. The pattern correlation of the forecasts produced in this manner remains above 0.6 for 50 days for both the MJO and BSISO when 23 yr of training data are used and 37 days for the MJO when 9 yr of data are used.


2016 ◽  
Vol 29 (19) ◽  
pp. 7009-7025 ◽  
Author(s):  
Li Deng ◽  
Tim Li

Abstract The interannual variability of the boreal summer intraseasonal oscillation (BSISO) is investigated using observed outgoing longwave radiation (OLR) and ERA-Interim data for the period of 1980–2012. It is found that the interannual variability of BSISO intensity is much stronger in the tropical western Pacific (TWP) than the tropical Indian Ocean (TIO). A BSISO intensity index is defined based on a multivariate EOF analysis in TWP. It is found that strong BSISO years are associated with El Niño–like sea surface temperature anomalies in the tropical Pacific, anomalous easterly shear, and enhanced background moisture condition in the region. Using a 2.5-layer atmospheric model with a specified idealized background mean state, the authors further examine the relative roles of background moisture and vertical shear fields in modulating the BSISO intensity. Sensitivity numerical experiments indicate that the background moisture change is most important in regulating the BSISO intensity, whereas the background vertical shear change also plays a role.


2009 ◽  
Vol 22 (24) ◽  
pp. 6561-6576 ◽  
Author(s):  
Wanqiu Wang ◽  
Mingyue Chen ◽  
Arun Kumar

Abstract Impacts of the ocean surface on the representation of the northward-propagating boreal summer intraseasonal oscillation (NPBSISO) over the Indian monsoon region are analyzed using the National Centers for Environmental Prediction (NCEP) coupled atmosphere–ocean Climate Forecast System (CFS) and its atmospheric component, the NCEP Global Forecast System (GFS). Analyses are based on forecasts of five strong NPBSISO events during June–September 2005–07. The inclusion of an interactive ocean in the model is found to be necessary to maintain the observed NPBSISO. The atmosphere-only GFS is capable of maintaining the convection that propagates from the equator to 12°N with reasonable amplitude within the first 15 days, after which the anomalies become very weak, suggesting that the atmospheric internal dynamics alone are not sufficient to sustain the anomalies to propagate to higher latitudes. Forecasts of the NPBSISO in the CFS are more realistic, with the amplitude of precipitation and 850-mb zonal wind anomalies comparable to that in observations for the entire 30-day target period, but with slower northward propagation compared to that observed. Further, the phase relationship between precipitation, sea surface temperature (SST), and surface latent heat fluxes associated with the NPBSISO in the CFS is similar to that in the observations, with positive precipitation anomalies following warm SST anomalies, which are further led by positive anomalies of the surface latent heat and solar radiation fluxes into the ocean. Additional experiments with the atmosphere-only GFS are performed to examine the impacts of uncertainties in SSTs. It is found that intraseasonal SST anomalies 2–3 times as large as that of the observational bulk SST analysis of Reynolds et al. are needed for the GFS to produce realistic northward propagation of the NPBSISO with reasonable amplitude and to capture the observed phase lag between SST and precipitation. The analysis of the forecasts and the experiments suggests that a realistic representation of the observed propagation of the oscillation by the NCEP model requires not only an interactive ocean but also an intraseasonal SST variability stronger than that of the bulk SST analysis.


2007 ◽  
Vol 20 (16) ◽  
pp. 4278-4286 ◽  
Author(s):  
Hae-Kyung Lee Drbohlav ◽  
Bin Wang

Abstract The structures and mechanism of the northward-propagating boreal summer intraseasonal oscillation (BSISO) in the southern Asian monsoon region are simulated and investigated in a three-dimensional intermediate model (3D model). The horizontal structure of the intraseasonal variability in the 3D model depicts the Kelvin–Rossby wave–type disturbance, which may or may not produce the northward-propagating disturbance in the Indian Ocean, depending on the seasonal-mean background winds. Two experiments are conducted in order to identify what characteristic of seasonal-mean background can induce the northwestward-tilted band in the Kelvin–Rossby wave, whose overall eastward movement gives the impression of the northward propagation at a given longitude. When the prescribed boreal summer mean winds are excluded in the first experiment, the phase difference between the barotropic divergence tendency and convection disappears. Consequently, the Rossby wave–type convection forms a zonally elongated band. As a result, the northward propagation of convection at a given longitude disappears. When the easterly vertical shear is introduced in the second experiment, the horizontal and the vertical structures of BSISO become similar to that of the northward-propagating one. The reoccurrence of the northwestward-directed convective band and the phase difference between the barotropic divergence tendency and the convection suggest that the summer mean zonal winds in the boreal Indian summer monsoon region are a critical condition that causes the horizontal and vertical structures of northward-propagating BSISO in the southern Asian monsoon region.


Sign in / Sign up

Export Citation Format

Share Document