scholarly journals Tropical Indian Ocean warming contributions to China winter climate trends since 1960

2018 ◽  
Vol 51 (7-8) ◽  
pp. 2965-2987 ◽  
Author(s):  
Qigang Wu ◽  
Yonghong Yao ◽  
Shizuo Liu ◽  
DanDan Cao ◽  
Luyao Cheng ◽  
...  
2017 ◽  
Vol 50 (11-12) ◽  
pp. 4707-4719 ◽  
Author(s):  
Zesheng Chen ◽  
Yan Du ◽  
Zhiping Wen ◽  
Renguang Wu ◽  
Chunzai Wang

2008 ◽  
Vol 21 (22) ◽  
pp. 6080-6088 ◽  
Author(s):  
Shuanglin Li ◽  
Jian Lu ◽  
Gang Huang ◽  
Kaiming Hu

Abstract A basin-scale warming is the leading mode of tropical Indian Ocean sea surface temperature (SST) variability on interannual time scales, and it is also the prominent feature of the interdecadal SST trend in recent decades. The influence of the warming on the East Asian summer monsoon (EASM) is investigated through ensemble experiments of several atmospheric general circulation models (AGCMs). The results from five AGCMs consistently suggest that near the surface, the Indian Ocean warming forces an anticyclonic anomaly over the subtropical western Pacific, intensifying the southwesterly winds to East China; and in the upper troposphere, it forces a Gill-type response with the intensified South Asian high, both favoring the enhancement of the EASM. These processes are argued to contribute to the stronger EASM during the summer following the peak of El Niño than monsoons in other years. These model results also suggest that tropical Indian Ocean warming may not have a causal relationship to the synchronous weakening of EASM on interdecadal time scales.


2013 ◽  
Vol 26 (3) ◽  
pp. 959-972 ◽  
Author(s):  
Yan Du ◽  
Wenju Cai ◽  
Yanling Wu

Abstract The tropical Indian Ocean dipole/zonal mode (IOD) is phase locked with the austral winter and spring seasons. This study describes three types of the IOD in terms of their peak time and duration. In particular, the authors focus on a new type that develops in May–June and matures in July–August, which is distinctively different from the canonical IOD, which may develop later and peak in September–November or persist from June to November. Such “unseasonable” IOD events are only observed since the mid-1970s, a period after which the tropical Indian Ocean has a closer relationship with the Pacific Ocean. The unseasonable IOD is an intrinsic mode of the Indian Ocean and occurs without an ensuing El Niño. A change in winds along the equator is identified as a major forcing. The wind change is in turn related to a weakening Walker circulation in the Indian Ocean sector in austral winter, which is in part forced by the rapid Indian Ocean warming. Thus, although the occurrence of the unseasonable IOD may be partially influenced by oceanic variability, the authors’ results suggest an influence from the Indian Ocean warming. This suggestion, however, awaits further investigation using fully coupled climate models.


2010 ◽  
Vol 23 (13) ◽  
pp. 3720-3738 ◽  
Author(s):  
Shuanglin Li ◽  
Judith Perlwitz ◽  
Martin P. Hoerling ◽  
Xiaoting Chen

Abstract Atmospheric circulation changes during boreal winter of the second half of the twentieth century exhibit a trend toward the positive polarity of both the Northern Hemisphere annular mode (NAM) and the Southern Hemisphere annular mode (SAM). This has occurred in concert with other trends in the climate system, most notably a warming of the Indian Ocean. This study explores whether the tropical Indian Ocean warming played a role in forcing these annular trends. Five different atmospheric general circulation models (AGCMs) are forced with an idealized, transient warming of Indian Ocean sea surface temperature anomalies (SSTA); the results of this indicate that the warming contributed to the annular trend in the NH but offset the annular trend in SH. The latter result implies that the Indian Ocean warming may have partly cancelled the influence of the stratospheric ozone depletion over the southern polar area, which itself forced a trend toward the positive phase of the SAM. Diagnosis of the physical mechanisms for the annular responses indicates that the direct impact of the diabatic heating induced by the Indian Ocean warming does not account for the annular response in the extratropics. Instead, interactions between the forced stationary wave anomalies and transient eddies is key for the formation of annular structures.


2013 ◽  
Vol 42 (3-4) ◽  
pp. 805-822 ◽  
Author(s):  
Soumi Chakravorty ◽  
J. S. Chowdary ◽  
C. Gnanaseelan

2020 ◽  
Vol 33 (13) ◽  
pp. 5427-5443
Author(s):  
Jiepeng Chen ◽  
Jin-Yi Yu ◽  
Xin Wang ◽  
Tao Lian

ABSTRACTPrevious studies linked the increase of the middle and low reaches of the Yangtze River (MLRYR) rainfall to tropical Indian Ocean warming during extreme El Niños’ (e.g., 1982/83 and 1997/98 extreme El Niños) decaying summer. This study finds the linkage to be different for the recent 2015/16 extreme El Niño’s decaying summer, during which the above-normal rainfalls over MLRYR and northern China are respectively linked to southeastern Indian Ocean warming and western tropical Indian Ocean cooling in sea surface temperatures (SSTs). The southeastern Indian Ocean warming helps to maintain the El Niño–induced anomalous lower-level anticyclone over the western North Pacific Ocean and southern China, which enhances moisture transport to increase rainfall over MLRYR. The western tropical Indian Ocean cooling first enhances the rainfall over central-northern India through a regional atmospheric circulation, the latent heating of which further excites a midlatitude Asian teleconnection pattern (part of circumglobal teleconnection) that results in an above-normal rainfall over northern China. The western tropical Indian Ocean cooling during the 2015/16 extreme El Niño is contributed by the increased upward latent heat flux anomalies associated with enhanced surface wind speeds, opposite to the earlier two extreme El Niños.


Sign in / Sign up

Export Citation Format

Share Document