scholarly journals Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

2018 ◽  
Vol 52 (3-4) ◽  
pp. 2005-2016 ◽  
Author(s):  
Xiaoming Hu ◽  
Sergio A. Sejas ◽  
Ming Cai ◽  
Patrick C. Taylor ◽  
Yi Deng ◽  
...  
2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2015 ◽  
Vol 96 (12) ◽  
pp. S25-S28 ◽  
Author(s):  
Xiaosong Yang ◽  
G. A. Vecchi ◽  
T. L. Delworth ◽  
K. Paffendorf ◽  
L. Jia ◽  
...  

2014 ◽  
Vol 53 (9) ◽  
pp. 2114-2129 ◽  
Author(s):  
Prathap Ramamurthy ◽  
Elie Bou-Zeid ◽  
James A. Smith ◽  
Zhihua Wang ◽  
Mary L. Baeck ◽  
...  

AbstractUrban facets—the walls, roofs, and ground in built-up terrain—are often conceptualized as homogeneous surfaces, despite the obvious variability in the composition and material properties of the urban fabric at the subfacet scale. This study focuses on understanding the influence of this subfacet heterogeneity, and the associated influence of different material properties, on the urban surface energy budget. The Princeton Urban Canopy Model, which was developed with the ability to capture subfacet variability, is evaluated at sites of various building densities and then applied to simulate the energy exchanges of each subfacet with the atmosphere over a densely built site. The analyses show that, although all impervious built surfaces convert most of the incoming energy into sensible heat rather than latent heat, sensible heat fluxes from asphalt pavements and dark rooftops are 2 times as high as those from concrete surfaces and light-colored roofs. Another important characteristic of urban areas—the shift in the peak time of sensible heat flux in comparison with rural areas—is here shown to be mainly linked to concrete’s high heat storage capacity as well as to radiative trapping in the urban canyon. The results also illustrate that the vegetated pervious soil surfaces that dot the urban landscape play a dual role: during wet periods they redistribute much of the available energy into evaporative fluxes but when moisture stressed they behave more like an impervious surface. This role reversal, along with the direct evaporation of water stored over impervious surfaces, significantly reduces the overall Bowen ratio of the urban site after rain events.


2020 ◽  
Author(s):  
Jonathan Day ◽  
Gabriele Arduini ◽  
Irina Sandu ◽  
Linus Magnusson ◽  
Anton Beljaars ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 954 ◽  
Author(s):  
Claudio Cassardo ◽  
Seon Park ◽  
Sungmin O ◽  
Marco Galli

This study investigates the potential changes in surface energy budget components under certain future climate conditions over the Alps and Northern Italy. The regional climate scenarios are obtained though the Regional Climate Model version 3 (RegCM3) runs, based on a reference climate (1961–1990) and the future climate (2071–2100) via the A2 and B2 scenarios. The energy budget components are calculated by employing the University of Torino model of land Processes Interaction with Atmosphere (UTOPIA), and using the RegCM3 outputs as input data. Our results depict a significant change in the energy budget components during springtime over high-mountain areas, whereas the most relevant difference over the plain areas is the increase in latent heat flux and hence, evapotranspiration during summertime. The precedence of snow-melting season over the Alps is evidenced by the earlier increase in sensible heat flux. The annual mean number of warm and cold days is evaluated by analyzing the top-layer soil temperature and shows a large increment (slight reduction) of warm (cold) days. These changes at the end of this century could influence the regional radiative properties and energy cycles and thus, exert significant impacts on human life and general infrastructures.


2017 ◽  
Vol 44 (17) ◽  
pp. 9029-9038 ◽  
Author(s):  
Kang Wang ◽  
Tingjun Zhang ◽  
Xiangdong Zhang ◽  
Gary D. Clow ◽  
Elchin E. Jafarov ◽  
...  

Author(s):  
G. M. Martínez ◽  
A. Vicente‐Retortillo ◽  
A. R. Vasavada ◽  
C. E. Newman ◽  
E. Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document