scholarly journals New observational insights into the atmospheric circulation over the Euro-Atlantic sector since 1685

2019 ◽  
Vol 54 (1-2) ◽  
pp. 823-841 ◽  
Author(s):  
Javier Mellado-Cano ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Ricardo M. Trigo

Abstract Wind direction kept in ships’ logbooks is a consolidated but underexploited observational source of relevant climatic information. In this paper, we present four indices of the monthly frequency of wind direction, one for each cardinal direction: Northerly (NI), Easterly (EI), Southerly (SI) and Westerly (WI), based on daily wind direction observations taken aboard ships over the English Channel. These Directional Indices (DIs) are the longest observational record of atmospheric circulation to date at the daily scale, covering the 1685–2014 period. DIs anomalies are associated with near-surface climatic signals over large areas of Europe in all seasons, with zonal indices (WI and EI) and meridional indices (NI and SI) often affecting different regions. Statistical models including all DIs are able to explain a considerable amount of European climate variability, in most cases higher than that accounted for by the North Atlantic Oscillation. As such, the DIs are able to reproduce the known European climatic history and provide new insights of certain episodes from monthly to multi-decadal time scales such as the warm winter decade of 1730–1739 or the extremely cold 1902 summer. The DIs show the potential to better constrain the atmospheric circulation response to external forcings and its associated anomalies. In particular, we provide first observational evidences of all year-round atmospheric circulation signals following the strongest tropical volcanic eruptions of the last three centuries. These signatures are more complex than previously thought and suggest that the well-reported winter warming and summer cooling cannot be simply interpreted in terms of changes in zonality.

2018 ◽  
Vol 14 (8) ◽  
pp. 1179-1194 ◽  
Author(s):  
Jesper Sjolte ◽  
Christophe Sturm ◽  
Florian Adolphi ◽  
Bo M. Vinther ◽  
Martin Werner ◽  
...  

Abstract. The effect of external forcings on atmospheric circulation is debated. Due to the short observational period, the analysis of the role of external forcings is hampered, making it difficult to assess the sensitivity of atmospheric circulation to external forcings, as well as persistence of the effects. In observations, the average response to tropical volcanic eruptions is a positive North Atlantic Oscillation (NAO) during the following winter. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have had more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages have been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year-long simulation with an isotope-enabled climate model, we reconstruct sea level pressure and temperature by matching the spatiotemporal variability in the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary (NAO) and secondary mode (Eastern Atlantic Pattern) of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show five winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On centennial timescales we observe a similar response of circulation as for the 5-year time-lagged response, with a high-pressure anomaly across North America and south of Greenland. This response to solar forcing is correlated to the second mode of atmospheric circulation, the Eastern Atlantic Pattern. The response could be due to an increase in blocking frequency, possibly linked to a weakening of the subpolar gyre. The long-term anomalies of temperature during solar minima shows cooling across Greenland, Iceland and western Europe, resembling the cooling pattern during the Little Ice Age (1450–1850 CE). While our results show significant correlation between solar forcing and the secondary circulation pattern on decadal (r=0.29, p<0.01) and centennial timescales (r=0.6, p<0.01), we find no consistent relationship between solar forcing and NAO. We conclude that solar and volcanic forcing impacts different modes of our reconstructed atmospheric circulation, which can aid in separating the regional effects of forcings and understanding the underlying mechanisms.


2020 ◽  
Author(s):  
Hera Guðlaugsdóttir ◽  
Jesper Sjolte ◽  
Árný Erla Sveinbjörnsdóttir ◽  
Hans Christian Steen-Larsen

Abstract Volcanic eruptions are important drivers of climate variability on both seasonal and multi-decadal time scales as a result of atmosphere-ocean coupling. While the direct response after equatorial eruptions emerges as the positive phase of the North Atlantic Oscillation in the first two years after an eruption, less is known about high latitude northern hemisphere eruptions. In this study we assess the difference between equatorial and high latitude volcanic eruptions through the reconstructed atmospheric circulation and stable water isotope records of Greenland ice cores for the last millennia (1241-1979 CE), where the coupling mechanism behind the long-term response is addressed. The atmospheric circulation is studied through the four main modes of climate variability in the North Atlantic, the Atlantic Ridge, Scandinavian Blocking and the positive and negative phase of the North Atlantic Oscillation. We report a difference in the atmospheric circulation response after high latitude eruptions compared to the response after equatorial eruptions, where the positive phase of the North Atlantic Oscillation and the Atlantic Ridge seem to be more associated with equatorial eruptions while the negative phase of the North Atlantic Oscillation seems to follow high latitude eruptions. This response is present during the first five years and then again in years 8-12 after both equatorial and high latitude eruptions. Such a prolonged response is evidence of an ocean-atmosphere coupling that is initiated through different mechanisms, where we suspect sea ice to play a key role.


2019 ◽  
Author(s):  
Hera Guðlaugsdóttir ◽  
Jesper Sjolte ◽  
Árný Erla Sveinbjörnsdóttir ◽  
Hans Christian Steen-Larsen

Abstract. Volcanic eruptions are important drivers of climate variability on both seasonal and multi-decadal time scales as a result of atmosphere-ocean coupling. While the direct response after equatorial eruptions emerges as the positive phase of the North Atlantic Oscillation in the first two years after an eruption, less is known about high latitude northern hemisphere eruptions. In this study we assess the difference between equatorial and high latitude volcanic eruptions through the reconstructed atmospheric circulation and stable water isotope records of Greenland ice cores for the last millennia (1241–1979 CE), where the coupling mechanism behind the long-term response is addressed. The atmospheric circulation is studied through the four main modes of climate variability in the North Atlantic, the Atlanti Ridge (AtR), Scandinavian Blocking (ScB) and the positive and negative phase of the North Atlantic Oscillation (NAO+/NAO−). We report a difference in the atmospheric circulation response after equatorial eruptions compared to the response after high latitude eruptions, where NAO+ and AtR seem to be more associated with equatorial eruptions while NAO- and ScB seems to follow high latitude eruptions. This response is present during the first five years and then again in years 8–12 after both equatorial and high latitude eruptions. Such a prolonged response is evidence of an ocean-atmosphere coupling that is initiated through different mechanisms, where we suspect sea ice to play a key role.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Armand Hernández ◽  
Guiomar Sánchez-López ◽  
Sergi Pla-Rabes ◽  
Laia Comas-Bru ◽  
Andrew Parnell ◽  
...  

Abstract The North Atlantic Oscillation (NAO) is the major atmospheric mode that controls winter European climate variability because its strength and phase determine regional temperature, precipitation and storm tracks. The NAO spatial structure and associated climatic impacts over Europe are not stationary making it crucial to understanding its past evolution in order to improve the predictability of future scenarios. In this regard, there has been a dramatic increase in the number of studies aimed at reconstructing past NAO variability, but the information related to decadal-scale NAO evolution beyond the last millennium is scarce and inconclusive. We present a new 2,000-year multi-annual, proxy-based reconstruction of local NAO impact, with associated uncertainties, obtained by a Bayesian approach. This new local NAO reconstruction is obtained from a mountain lacustrine sedimentary archive of the Iberian Peninsula. This geographical area is not included in previous NAO reconstructions despite being a widely used region for instrumental-based NAO measurements. We assess the main external forcings (i.e., volcanic eruptions and solar activity) on NAO variability which, on a decadal scale, show that a low number of sunspots correlate to low NAO values. By comparison with other previously published NAO reconstructions in our analyses we can test the stationarity of the solar influence on the NAO signal across a latitudinal gradient based on the position of the employed archives for each NAO reconstruction. Inconclusive results on the volcanic forcing on NAO variability over decadal time-scales indicates the need for further studies. Moreover, we highlight the potential role of other North Atlantic modes of variability (i.e., East Atlantic pattern) on the non-stationary behaviour of the NAO throughout the Common Era, likely via solar forcing.


2018 ◽  
Author(s):  
Jesper Sjolte ◽  
Christophe Sturm ◽  
Florian Adolphi ◽  
Bo M. Vinther ◽  
Martin Werner ◽  
...  

Abstract. External forcings are known to impact atmospheric circulation. However, the analysis of the role of external forcings based on observational data is hampered due to the short observational period, and the sensitivity of atmospheric circulation to external forcings as well as persistence the effects are debated. A positive phase of the North Atlantic Oscillation (NAO) has been observed the following winter after tropical volcanic eruptions. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages has been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year long simulation with an isotope enabled climate model, we reconstruct sea level pressure and temperature by matching the spatio-temporal variability of the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary and secondary modes of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show 5 winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over Northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On longer time scales we observe a similar response in circulation as for the 5-year time-lagged response. This is likely due to an increase in blocking frequency and an associated weakening of the subpolar gyre. The long-term response of temperature to solar minima shows cooling across Greenland, Iceland and Western Europe, resembling the cooling pattern during the Little Ice Age. While our results show a clear link between solar forcing and the secondary circulation patterns, we find no consistent relationship between solar forcing and NAO.


Author(s):  
Courtney Quinn ◽  
Dylan Harries ◽  
Terence J. O’Kane

AbstractThe dynamics of the North Atlantic Oscillation (NAO) are analyzed through a data-driven model obtained from atmospheric reanalysis data. We apply a regularized vector autoregressive clustering technique to identify recurrent and persistent states of atmospheric circulation patterns in the North Atlantic sector (110°W-0°E, 20°N-90°N). In order to analyze the dynamics associated with the resulting cluster-based models, we define a time-dependent linear delayed map with a switching sequence set a priori by the cluster affiliations at each time step. Using a method for computing the covariant Lyapunov vectors (CLVs) over various time windows, we produce sets of mixed singular vectors (for short windows) and approximate the asymptotic CLVs (for longer windows). The growth rates and alignment of the resulting time-dependent vectors are then analyzed. We find that the window chosen to compute the vectors acts as a filter on the dynamics. For short windows, the alignment and changes in growth rates are indicative of individual transitions between persistent states. For long windows, we observe an emergent annual signal manifest in the alignment of the CLVs characteristic of the observed seasonality in the NAO index. Analysis of the average finite-time dimension reveals the NAO− as the most unstable state relative to the NAO+, with persistent AR states largely stable. Our results agree with other recent theoretical and empirical studies that have shown blocking events to have less predictability than periods of enhanced zonal flow.


2018 ◽  
Vol 31 (10) ◽  
pp. 3849-3863 ◽  
Author(s):  
Javier Mellado-Cano ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Ricardo M. Trigo ◽  
Mari Carmen Álvarez-Castro

Abstract This paper presents observational evidence of the atmospheric circulation during the Late Maunder Minimum (LMM, 1685–1715) based on daily wind direction observations from ships in the English Channel. Four wind directional indices and 8-point wind roses are derived at monthly scales to characterize the LMM. The results indicate that the LMM was characterized by a pronounced meridional circulation and a marked reduction in the frequency of westerly days all year round, as compared to the present (1981–2010). The winter circulation contributed the most to the cold conditions. Nevertheless, findings indicate that the LMM in Europe was more heterogeneous than previously thought, displaying contrasting spatial patterns in both circulation and temperature, as well as large decadal variability. In particular, there was an increase of northerly winds favoring colder winters in the first half of the LMM, but enhanced southerlies contributing to milder conditions in the second half of the LMM. The analysis of the atmospheric circulation yields a new and complete classification of LMM winters. The temperature inferred from the atmospheric circulation confirms the majority of extremely cold winters well documented in the literature, while uncovering other less documented cold and mild winters. The results also suggest a nonstationarity of the North Atlantic Oscillation (NAO) pattern within the LMM, with extremely cold winters being driven by negative phases of a “high zonal” NAO pattern and “low zonal” NAO patterns dominating during moderately cold winters.


2016 ◽  
Author(s):  
Luca Pozzoli ◽  
Srdan Dobricic ◽  
Simone Russo ◽  
Elisabetta Vignati

Abstract. Winter warming and sea ice retreat observed in the Arctic in the last decades determine changes of large scale atmospheric circulation pattern that may impact as well the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a new statistical algorithm, based on the Maximum Likelihood Estimate approach, to determine how the changes of three large scale weather patterns (the North Atlantic Oscillation, the Scandinavian Blocking, and the El Nino-Southern Oscillation), associated with winter increasing temperatures and sea ice retreat in the Arctic, impact the transport of BC to the Arctic and its deposition. We found that the three atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the Eastern Arctic while they increase BC deposition in the Western Arctic. The increasing trend is mainly due to the more frequent occurrences of stable high pressure systems (atmospheric blocking) near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. The North Atlantic Oscillation has a smaller impact on BC deposition in the Arctic, but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The El Nino-Southern Oscillation does not influence significantly the transport and deposition of BC to the Arctic. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.


The Verna Fracture Zone in the North Atlantic (9 to 11° N), which has been identified as a transform fault zone, contains exposures of serpentinized peridotites, while its adjacent ridge segments are floored mainly by typical abyssal ocean ridge basalts. This petrologic contrast correlates with the greater frequency of volcanic eruptions along the actively spreading ridge segments compared to the transform fault zone. Where rifting components occur across transform faults, exposures of the deeper zone of oceanic crust may result. The bathymetry of the Verna Fracture Zone suggests that some uplift parallel to the fracture zone as well as rifting led to exposures of deeper rocks. The basalts from the adjacent ridge axes contain ‘xenocrysts’ of plagioclase and olivine and more rarely of chromite. These appear to have a cognate origin, perhaps related to cooling and convection in near surface magma chambers. The basalts from the ridge axes, offset and on opposite sides of the transform fault, have similar features and compositions. The plagioclase peridotites have mineralogical features which indicate equilibration in the plagioclase pyrolite facies, suggesting maximum equilibration depths of around 30 km for a temperature of around 1200 °C. The chemical characteristics of the Vema F.Z. peridotites suggest that they may be undifferentiated mantle, emplaced as a subsolidus hot plastic intrusion or as a crystal mush. The abundance of peridotites and serpentinized peridotites is believed to reflect their abundance in seismic layer three of the oceanic crust.


Sign in / Sign up

Export Citation Format

Share Document