Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia

2020 ◽  
Vol 54 (11-12) ◽  
pp. 5111-5126 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Wen Chen ◽  
Kaiming Hu ◽  
Bin Yu
2020 ◽  
Vol 33 (17) ◽  
pp. 7255-7274
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Wen Chen ◽  
Kai Li

AbstractThis study reveals a pronounced out-of-phase relationship between surface air temperature (SAT) anomalies over northeast Eurasia in boreal winter and the following summer during 1980–2017. A colder (warmer) winter over northeast Eurasia tends to be followed by a warmer (cooler) summer of next year. The processes for the out-of-phase relation of winter and summer SAT involve the Arctic Oscillation (AO), the air–sea interaction in the North Atlantic Ocean, and a Eurasian anomalous atmospheric circulation pattern induced by the North Atlantic sea surface temperature (SST) anomalies. Winter negative AO/North Atlantic Oscillation (NAO)-like atmospheric circulation anomalies lead to continental cooling over Eurasia via anomalous advection and a tripolar SST anomaly pattern in the North Atlantic. The North Atlantic SST anomaly pattern switches to a dipolar pattern in the following summer via air–sea interaction processes and associated surface heat flux changes. The summer North Atlantic dipolar SST anomaly pattern induces a downstream atmospheric wave train, including large-scale positive geopotential height anomalies over northeast Eurasia, which contributes to positive SAT anomalies there via enhancement of downward surface shortwave radiation and anomalous advection. Barotropic model experiments verify the role of the summer North Atlantic SST anomalies in triggering the atmospheric wave train over Eurasia. Through the above processes, a colder winter is followed by a warmer summer over northeast Eurasia. The above processes apply to the years when warmer winters are followed by cooler summers except for opposite signs of SAT, atmospheric circulation, and SST anomalies.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 524 ◽  
Author(s):  
Wei Zhao ◽  
Ningfang Zhou ◽  
Shangfeng Chen

Observational and reanalysis data show that the surface air temperature (SAT) over most parts of Europe in June of 2019 broke the highest temperature on record. In this study, we investigate the factors for the formation of this record-breaking high temperature over Europe, focusing on the role of atmospheric circulation anomalies. A strong anomalous anticyclone appeared over Europe, with a quasi-barotropic vertical structure. On one hand, the downward motion anomalies associated with this anomalous anticyclone led to less cloud cover and an increase in downward shortwave radiation, which contributed to the SAT warming over Europe. On the other hand, southerly wind anomalies to the west side of the anomalous anticyclone also resulted in SAT warming via carrying warmer and wetter air northward from lower latitudes. The formation of the anticyclonic anomaly over Europe in June of 2019 was closely related to an atmospheric wave train propagating eastward from the mid-high latitudes of the North Atlantic to Eurasia. The atmospheric wave train over the North Atlantic–Eurasia region is suggested to be mainly related to the Atlantic–Eurasia teleconnection pattern. Further analysis indicates that a decrease in the local soil moisture over Europe may also have escalated the surface temperature warming through a positive land–atmosphere feedback.


2021 ◽  
Author(s):  
Jacob John Stuivenvolt Allen ◽  
Simon S.-Y. Wang ◽  
Yoshimitsu Chikamoto ◽  
Jonathan D.D. Meyer ◽  
Zachary F. Johnson ◽  
...  

Abstract Explosive cyclones (ECs), defined as developing extratropical cyclones that experience pressure drops of at least 24 hPa in 24 hours, are impactful weather events which occur along highly populated coastal regions in the eastern United States. These storms occur due to a combination of atmospheric and surface processes, such as jet stream intensification and latent heat release at the ocean surface. Even though previous literature has elucidated the role of these processes in EC formation, the sources of interannual variability that impact seasonal EC frequency are not well known. To analyze the sources of interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the North Central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency exhibits a growing relationship with an atmospheric wave-train emanating from the North Pacific in the last 30 years. This wave-train pattern of alternating high-and-low pressure resulted in resulted in heightened upper-level divergence and baroclinic instability along the east coast of North America. Using a coupled model experiment, we show that the tropical Pacific Ocean is the main driver of this atmospheric wave train and the subsequent enhancement seasonal baroclinic instability in the North Atlantic.


2019 ◽  
Vol 32 (19) ◽  
pp. 6513-6532 ◽  
Author(s):  
Zhang Chen ◽  
Renguang Wu ◽  
Zhibiao Wang

Abstract The present study investigates the impacts of the North Atlantic sea surface temperature (SST) anomalies on the East Asian winter monsoon (EAWM) variability. It is found that the northern component of the EAWM variability is associated with a dipole pattern of preceding summer North Atlantic SST anomalies during 1979–2016. The processes linking preceding summer North Atlantic SST to EAWM include the North Atlantic air–sea interactions and atmospheric wave train triggered by the North Atlantic SST anomalies. Atmospheric wind anomalies in the preceding spring–summer result in the formation of a dipole SST anomaly pattern through surface heat flux changes. In turn, the induced SST anomalies provide a feedback on the atmosphere, modifying the location and intensity of anomalous winds over the North Atlantic. The associated surface heat flux anomalies switch the North Atlantic SST anomaly distribution from a dipole pattern in summer to a tripole pattern in the following winter. The North Atlantic tripole SST anomalies excite an atmospheric wave train extending from the North Atlantic through Eurasia to East Asia in winter, resulting in anomalous EAWM. However, the relationship of the northern component of EAWM to preceding summer North Atlantic SST anomalies is weak before the late 1970s. During 1956–76, due to weak air–sea interaction over the North Atlantic, no obvious tripole SST anomaly pattern is established in winter. The atmospheric wave train in winter is located at higher latitudes, leading to a weak connection between the northern component of EAWM and the preceding summer North Atlantic dipole SST anomaly pattern.


2021 ◽  
pp. 1-51

Abstract The dominant mode of the interannual variability in the frequency of extreme high-temperature events (FEHE) during summer over eastern China showed a dipole mode with reversed anomalies of FEHE over northeastern and southern China. This study found that the interannual variability of this dipole mode underwent an interdecadal increase after the early 1990s. The anomalous atmospheric circulation responsible for the FEHE dipole mode was associated with the air-sea interaction over the western tropical Pacific and North Atlantic. Due to the weakened correlation between the SST in the tropical Pacific and in the Indian Ocean after the early 1990s, a meridional atmospheric wave train induced by the anomalous SST around the Maritime continent (MCSST) was intensified during 1994–2013, which was also contributed by the increased interannual variability of MCSST. However, under the influence of the anomalous SST in the Indian Ocean concurrent with the anomalous MCSST, the meridional wave train was weakened and contributed less to the dipole mode during 1972–1993. In addition, the dipole mode was associated with the atmospheric wave trains at middle-high latitude, which were different during the two periods and related to different air-sea interaction in the North Atlantic. The interannual variability of the dipole mode induced by the associated SST anomalies in the North Atlantic during 1994–2013 was significantly larger than that during 1972–1993. Therefore, the interannual variability of the dipole mode was increased after the early 1990s.


2020 ◽  
Vol 77 (4) ◽  
pp. 1387-1414
Author(s):  
Dehai Luo ◽  
Yao Ge ◽  
Wenqi Zhang ◽  
Aiguo Dai

Abstract In this paper, reanalysis data are first analyzed to reveal that the individual negative (positive)-phase Pacific–North American pattern (PNA) or PNA− (PNA+) has a lifetime of 10–20 days, is characterized by strong (weak) westerly jet stream meanders, and exhibits clear wave train structures, whereas the PNA− with rapid retrogression tends to have longer lifetime and larger amplitude than the PNA+ with slow retrogression. In contrast, the wave train structure of the North Atlantic Oscillation (NAO) is less distinct, and the positive (negative)-phase NAO shows eastward (westward) movement around a higher latitude than the PNA. Moreover, it is found that the PNA wave train occurs under a larger background meridional potential vorticity gradient (PVy) over the North Pacific than that over the North Atlantic for the NAO. A unified nonlinear multiscale interaction (UNMI) model is then developed to explain why the PNA as a nonlinear wave packet has such characteristics and its large difference from the NAO. The model results reveal that the larger background PVy for the PNA (due to its location at lower latitudes) leads to its larger energy dispersion and weaker nonlinearity than the NAO, thus explaining why the PNA (NAO) is largely a linear (nonlinear) process with a strong (weak) wave train structure, though it is regarded as a nonlinear initial-value problem. The smaller PVy for the PNA− than for the PNA+ leads to lower energy dispersion and stronger nonlinearity for PNA−, which allows it to maintain larger amplitude and have a longer lifetime than the PNA+. Thus, the difference in the background PVy is responsible for the asymmetry between the two phases of PNA and the difference between the PNA and NAO.


2007 ◽  
Vol 20 (5) ◽  
pp. 856-870 ◽  
Author(s):  
Lixin Wu ◽  
Feng He ◽  
Zhengyu Liu ◽  
Chun Li

Abstract In this paper, the atmospheric teleconnections of the tropical Atlantic SST variability are investigated in a series of coupled ocean–atmosphere modeling experiments. It is found that the tropical Atlantic climate not only displays an apparent interhemispheric link, but also significantly influences the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). In spring, the tropical Atlantic SST exhibits an interhemispheric seesaw controlled by the wind–evaporation–SST (WES) feedback that subsequently decays through the mediation of the seasonal migration of the ITCZ. Over the North Atlantic, the tropical Atlantic SST can force a significant coupled NAO–dipole SST response in spring that changes to a coupled wave train–horseshoe SST response in the following summer and fall, and a recurrence of the NAO in the next winter. The seasonal changes of the atmospheric response as well as the recurrence of the next winter’s NAO are driven predominantly by the tropical Atlantic SST itself, while the resulting extratropical SST can enhance the atmospheric response, but it is not a necessary bridge of the winter-to-winter NAO persistency. Over the Pacific, the model demonstrates that the north tropical Atlantic (NTA) SST can also organize an interhemispheric SST seesaw in spring in the eastern equatorial Pacific that subsequently evolves into an ENSO-like pattern in the tropical Pacific through mediation of the ITCZ and equatorial coupled ocean–atmosphere feedback.


2020 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Lixin Wu

<p>Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO<sup>+</sup>), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO<sup>-</sup> that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO<sup>+</sup>.The PB events concurring with NAO<sup>-</sup> (NAO<sup>+</sup>) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO<sup>-</sup> events and producing the WWCE SAT dipole component related to the PB-NAO<sup>+</sup> events because the PB and NAO<sup>+</sup> form a more zonal wave train in this case.</p>


2011 ◽  
Vol 68 (5) ◽  
pp. 954-963 ◽  
Author(s):  
Tim Woollings ◽  
Joaquim G. Pinto ◽  
João A. Santos

Abstract The development of a particular wintertime atmospheric circulation regime over the North Atlantic, comprising a northward shift of the North Atlantic eddy-driven jet stream and an associated strong and persistent ridge in the subtropics, is investigated. Several different methods of analysis are combined to describe the temporal evolution of the events and relate it to shifts in the phase of the North Atlantic Oscillation and East Atlantic pattern. First, the authors identify a close relationship between northward shifts of the eddy-driven jet, the establishment and maintenance of strong and persistent ridges in the subtropics, and the occurrence of upper-tropospheric anticyclonic Rossby wave breaking over Iberia. Clear tropospheric precursors are evident prior to the development of the regime, suggesting a preconditioning of the Atlantic jet stream and an upstream influence via a large-scale Rossby wave train from the North Pacific. Transient (2–6 days) eddy forcing plays a dual role, contributing to both the initiation and then the maintenance of the circulation anomalies. During the regime there is enhanced occurrence of anticyclonic Rossby wave breaking, which may be described as low-latitude blocking-like events over the southeastern North Atlantic. A strong ridge is already established at the time of wave-breaking onset, suggesting that the role of wave-breaking events is to amplify the circulation anomalies rather than to initiate them. Wave breaking also seems to enhance the persistence, since it is unlikely that a persistent ridge event occurs without being also accompanied by wave breaking.


Sign in / Sign up

Export Citation Format

Share Document