Warm season temperature in the Qinling Mountains (north-central China) since 1740 CE recorded by tree-ring maximum latewood density of Shensi fir

2021 ◽  
Author(s):  
Feng Chen ◽  
Mary H. Gagen ◽  
Heli Zhang ◽  
Youping Chen ◽  
Ziang Fan ◽  
...  
1994 ◽  
Vol 42 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Malcolm K. Hughes ◽  
Wu Xiangding ◽  
Shao Xuemei ◽  
Gregg M. Garfin

AbstractMay-June (MJ) and April-July (AJ) precipitation at Huashan in north-central China has been reconstructed for the period A.D. 1600 to 1988 using tree-ring density and width fromPinus armandii. MJ precipitation (based on ring width and maximum latewood density) calibrated and cross-validated against local instrumental data more strongly than AJ precipitation (based only on ring width). A major drought was reconstructed for the mid- and late 1920s, confirmed by local documentary sources. This drought (culminating in 1929) was the most severe of the 389-yr period for MJ and second most severe for AJ, after an event ending in 1683. Neither reconstruction shows much spectral power at frequencies lower than 1 in 10 yr, but both show concentrations of power between 2.1 and 2.7 yr and 3.5 to 9 yr. There are significant correlations between the two reconstructions and a regional dryness/wetness index (DW) based on documentary sources, particularly at high frequencies. These correlations are focused in the 7.6- to 7.3-, 3.8- to 3.6-, and 2.5-yr periods. Using singular spectrum analysis, quasiperiodic behavior with a period close to 7.2 yr was identified in the MJ precipitation reconstruction and in the DW index based on documents.


1996 ◽  
Vol 26 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Rosanne D. D'arrigo ◽  
Edward R. Cook ◽  
Gordon C. Jacoby

Temperature-sensitive maximum latewood density chronologies from sites near tree line in Labrador are used to infer past changes in warm-season surface air and sea surface temperatures for the northwest Atlantic. Temperatures are reconstructed for the Grand Banks region based on density records from southern Labrador, while a density series from near Okak Fiord, northern Labrador, is used to infer past temperature variations for north-coastal Labrador and the adjacent Labrador Sea. The Labrador chronologies show good agreement with annual and decadal-scale temperature fluctuations over the recent period of instrumental record, and extend this temperature information into the past by several centuries. The lowest density value at the Okak site occurs in 1816, known as the "year without a summer" in eastern North America. Spectral analyses reveal statistically significant variations with periods of around 8.7, 18–22, and 45–66 years. These fluctuations are in general agreement with those identified in several instrumental and modeling analyses of North Atlantic climate.


2018 ◽  
Vol 50 ◽  
pp. 91-97 ◽  
Author(s):  
Quan Zhou ◽  
Hang Shi ◽  
Chengpo Liu ◽  
Kerong Zhang ◽  
Quanfa Zhang ◽  
...  

2011 ◽  
Vol 107 (3-4) ◽  
pp. 633-643 ◽  
Author(s):  
Feng Chen ◽  
Yu-jiang Yuan ◽  
Wen-shou Wei ◽  
Shu-long Yu ◽  
Zi-ang Fan ◽  
...  

2003 ◽  
Vol 60 (3) ◽  
pp. 252-262 ◽  
Author(s):  
Nicole K. Davi ◽  
Gordon C. Jacoby ◽  
Gregory C. Wiles

AbstractVariations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July–September) temperature reconstruction that spans A.D. 1593–1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s–early 1700s followed by a warmer period, cooling in the late 1700s–early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550–1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.


2018 ◽  
Author(s):  
Yesi Zhao ◽  
Jiangfeng Shi ◽  
Shiyuan Shi ◽  
Xiaoqi Ma ◽  
Weijie Zhang ◽  
...  

Abstract. Historical hydroclimate records derived from tree-ring parameters are scarce in the core region of East Asian Summer Monsoon (EASM) in China, limiting our understanding of the inter-decadal hydroclimate variability of this region and its possible connections with the EASM. In this study, standard chronologies of total tree-ring width (TRW), earlywood width (EWW), and latewood width (LWW) were created using tree-ring samples of Pinus tabulaeformis in the eastern Qinling Mountains, Central China. The strongest growth-climate relationship was found between EWW and May–July self-calibrated Palmer Drought Severity Index (MJJ scPDSI). Therefore, a linear regression model, which explained 50.3 % of the variance in MJJ scPDSI (1951–2005), was developed to estimate the past MJJ scPDSI variations using EWW. The time series of MJJ scPDSI was extended back to the year 1866, and validated by independent hydroclimate series from nearby regions. Before the mid-1950s, the variations of MJJ scPDSI were in-phase with those of EASM intensity on decadal and longer timescales, suggesting that wet conditions would occur in the eastern Qinling Mountains when EASM was strengthened. Since the mid-1950s, however, the relationship has been out-of-phase. This phase change may be associated with an intensified dipole pattern of EASM precipitation.


Trees ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Alexander V. Kirdyanov ◽  
Eugene A. Vaganov ◽  
Malcolm K. Hughes

2020 ◽  
Author(s):  
Laia Andreu-Hayles ◽  
Rosanne D'Arrigo ◽  
Rose Oelkers ◽  
Kevin Anchukaitis ◽  
Greg Wiles ◽  
...  

<p>Tree ring-width (TRW) and Maximum Latewood Density (MXD) series have been largely used to develop high-resolution temperature reconstructions for the Northern Hemisphere. The divergence phenomenon, a weakening of the positive relationship between TRW and summer temperatures, has been observed particularly in northwestern North America chronologies. In contrast, MXD datasets have shown a more stable relationship with summer temperatures, but it is costly and labor-intensive to produce. Recently, methodological advances in image analyses have led to development of a less expensive and labor-intensive MXD proxy known as Blue Intensity (BI). Here, we compare 6 newly developed BI tree-ring chronologies of white spruce (<em>Picea glauca</em> [Moench] Voss) from high-latitude boreal forests in North America (Alaska in USA; Yukon and the Northwestern Territory in Canada), with MXD chronologies developed at the same sites. We assessed the quality of BI in relation to MXD based on mean correlation between trees, chronology reliability based on the Expressed Population Signal (EPS), spectral properties, and the strength and spatial extent of the temperature signal. Individual BI chronologies established significant correlations with summer temperatures showing a similar strength and spatial cover than MXD chronologies. Overall, the BI tree-ring data is emerging as a valuable proxy for generating high-resolution temperature spatial reconstructions over northwestern America.</p>


Sign in / Sign up

Export Citation Format

Share Document