scholarly journals Causal effect of the tropical Pacific sea surface temperature on the Upper Colorado River Basin spring precipitation

2021 ◽  
Author(s):  
Siyu Zhao ◽  
Jiaying Zhang

AbstractThe Colorado River is one of the most important rivers in the southwestern U.S., with ~ 90% of the total flow originating from the Upper Colorado River Basin (UCRB). The UCRB April–July streamflow is well-correlated to the UCRB spring precipitation. It is known that the UCRB precipitation is linked to an El Niño-like sea surface temperature (SST) pattern, but the causal effect of the tropical Pacific SST on the UCRB spring precipitation is still uncertain. Here, we apply a Granger causality approach to understand the causal effect of the tropical Pacific averaged SST in previous three seasons (winter, fall, and summer) on the UCRB averaged precipitation in spring in observations and two climate models. In observations, only the winter SST has Granger causal effect (with p-value ~ 0.05) on spring precipitation, while historical simulations of the two climate models overestimate the causal effect for winter and fall (with p-value < 0.01 and < 0.05, respectively) due to model biases. Moreover, future projections of the two climate models show divergent causal effects, especially for the scenario with high anthropogenic emissions. The divergent projections indicate that (1) there are large uncertainties in model projections of the causal effect of the tropical Pacific SST on UCRB spring precipitation and (2) it is uncertain whether climate models can reliably capture changes in such causality. These uncertainties may result in large uncertainties in seasonal forecasts of the UCRB hydroclimate under global climate change.

2014 ◽  
Vol 27 (22) ◽  
pp. 8413-8421 ◽  
Author(s):  
Lei Zhang ◽  
Tim Li

Abstract How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open. A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.


Sign in / Sign up

Export Citation Format

Share Document