Modeling particle size in the dispersion polymerization of styrene using artificial neural network and genetic algorithm

2016 ◽  
Vol 294 (11) ◽  
pp. 1833-1843
Author(s):  
Alireza Mahjub
2021 ◽  
Vol 11 (14) ◽  
pp. 6278
Author(s):  
Mengmeng Wu ◽  
Jianfeng Wang

The inhomogeneous distribution of contact force chains (CFC) in quasi-statically sheared granular materials dominates their bulk mechanical properties. Although previous micromechanical investigations have gained significant insights into the statistical and spatial distribution of CFC, they still lack the capacity to quantitatively estimate CFC evolution in a sheared granular system. In this paper, an artificial neural network (ANN) based on discrete element method (DEM) simulation data is developed and applied to predict the anisotropy of CFC in an assembly of spherical grains undergoing a biaxial test. Five particle-scale features including particle size, coordination number, x- and y-velocity (i.e., x and y-components of the particle velocity), and spin, which all contain predictive information about the CFC, are used to establish the ANN. The results of the model prediction show that the combined features of particle size and coordination number have a dominating influence on the CFC’s estimation. An excellent model performance manifested in a close match between the rose diagrams of the CFC from the ANN predictions and DEM simulations is obtained with a mean accuracy of about 0.85. This study has shown that machine learning is a promising tool for studying the complex mechanical behaviors of granular materials.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammad Mehdi Arab ◽  
Abbas Yadollahi ◽  
Maliheh Eftekhari ◽  
Hamed Ahmadi ◽  
Mohammad Akbari ◽  
...  

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Sign in / Sign up

Export Citation Format

Share Document