Boltzmann superposition principle for a time-dependent soft material: assessment under creep flow field

2017 ◽  
Vol 56 (11) ◽  
pp. 927-940 ◽  
Author(s):  
Asheesh Shukla ◽  
Yogesh M. Joshi
Author(s):  
C. Poensgen ◽  
H. E. Gallus

A measuring technique based on multisensor hot-wire anemometry has been developed to determine the unsteady three-dimensional velocity vector and the structure of turbulent flows. It then has been applied to the passage and the exit flow of an annular compressor cascade, which is periodically disturbed by the wakes of a cylinder rotor, located about 50 percent of blade chord upstream. In part I of this paper the decay of the rotor wakes will be described first without stator and secondly through a stator passage. The time-dependent turbulent flow field downstream of this stator is discussed in Part II. The rotor wakes have a major influence on the development of three-dimensional separated regions inside the compressor cascade, and this interaction will be addressed in both parts of this paper.


1995 ◽  
Vol 302 ◽  
pp. 45-63 ◽  
Author(s):  
W. S. J. Uijttewaal ◽  
E. J. Nijhof

A fluid droplet subjected to shear flow deforms and rotates in the flow. In the presence of a wall the droplet migrates with respect to a material element in the undisturbed flow field. Neglecting fluid inertia, the Stakes problem for the droplet is solved using a boundary integral technique. It is shown how the time-dependent deformation, orientation, circulation and droplet viscosity. The migration velocities are calculated in the directions parallel and perpendicular to the wall, and compared with theoretical models and expeeriments. The results reveal some of the shortcomings of existiong models although not all diserepancies between our calculations and known experiments could be clarified.


Author(s):  
Jian-Jun Shu

A number of new closed-form fundamental solutions for the two-dimensional generalized unsteady Oseen and Stokes flows associated with arbitrary time-dependent translational and rotational motions have been developed. As an example of application, the hydrodynamic force acting on a circular cylinder translating in an unsteady flow field at low Reynolds numbers is calculated using the new generalized fundamental solutions.


2014 ◽  
Vol 529 ◽  
pp. 296-302 ◽  
Author(s):  
Wei Zuo ◽  
Shun Kang

The aerodynamic performance and the bypass flow field of a vertical axis wind turbine under self-starting are investigated using CFD simulations in this paper. The influence of pitch angle variations on the performance of the wind turbine during self-starting is presented. A two-dimensional model of the wind turbine with three blades is employed. A commercial software FlowVision is employed in this paper, which uses dynamic Cartesian grid. The SST turbulence model is used for turbulence modeling, which assumes the flow full turbulent. Based on the comparison between the computed time-dependent variations of the rotation speed with the experimental data, the time-dependent variations of the torque are presented. The characteristics of self-starting of the wind turbine are analyzed with the pitch angle of 0o、-2oand 2o. The influence of pitch angle variations on two-dimensional unsteady viscous flow field through velocity contours is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document