Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson's disease

2003 ◽  
Vol 106 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Enikö Kövari ◽  
Gabriel Gold ◽  
François R. Herrmann ◽  
Alessandra Canuto ◽  
Patrick R. Hof ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhaoxiang Zhou ◽  
Penghai Ye ◽  
Xu-Hui Li ◽  
Yuxiang Zhang ◽  
Muhang Li ◽  
...  

AbstractParkinson’s disease (PD) is a multi-system neurodegenerative disorder. Patients with PD often suffer chronic pain. In the present study, we investigated motor, sensory and emotional changes in three different PD mice models. We found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treatment caused significant changes in all measurements. Mechanical hypersensitivity of PD model induced by MPTP peaked at 3 days and persisted for at least 14 days. Using Fos transgenic mice, we found that neurons in the anterior cingulate cortex (ACC) were activated after MPTP treatment. Inhibiting ACC by bilateral microinjection of muscimol significantly reduced mechanical hypersensitivity and anxiety-like responses. By contrast, MPTP induced motor deficit was not affected, indicating ACC activity is mostly responsible for sensory and emotional changes. We also investigated excitatory synaptic transmission and plasticity using brain slices of MPTP treated animals. While L-LTP was blocked or significantly reduced. E-LTP was not significantly affected in slices of MPTP treated animals. LTD induced by repetitive stimulation was not affected. Furthermore, we found that paired-pulse facilitation and spontaneous release of glutamate were also altered in MPTP treated animals, suggesting presynaptic enhancement of excitatory transmission in PD. Our results suggest that ACC synaptic transmission is enhanced in the animal model of PD, and cortical excitation may play important roles in PD related pain and anxiety.


2016 ◽  
Vol 195 (5) ◽  
pp. 1613-1620 ◽  
Author(s):  
Takeya Kitta ◽  
Michael B. Chancellor ◽  
William C. de Groat ◽  
Nobuo Shinohara ◽  
Naoki Yoshimura

1992 ◽  
Vol 2 (6) ◽  
pp. 513-525 ◽  
Author(s):  
Murray Grossman ◽  
Peter Crino ◽  
Martin Reivich ◽  
Matthew B. Stem ◽  
Howard I. Hurtig

Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


2016 ◽  
Vol 23 (1) ◽  
pp. 327-336 ◽  
Author(s):  
Jieun E. Kim ◽  
Geon Ha Kim ◽  
Jaeuk Hwang ◽  
Jung Yoon Kim ◽  
Perry F. Renshaw ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Franziska Maier ◽  
Andrea Greuel ◽  
Marius Hoock ◽  
Rajbir Kaur ◽  
Masoud Tahmasian ◽  
...  

Abstract Background Impaired self-awareness of cognitive deficits (ISAcog) has rarely been investigated in Parkinson's disease (PD). ISAcog is associated with poorer long-term outcome in other diseases. This study examines ISAcog in PD with and without mild cognitive impairment (PD-MCI), compared to healthy controls, and its clinical-behavioral and neuroimaging correlates. Methods We examined 63 PD patients and 30 age- and education-matched healthy controls. Cognitive state was examined following the Movement Disorder Society Level II criteria. ISAcog was determined by subtracting z-scores (based on controls' scores) of objective tests and subjective questionnaires. Neural correlates were assessed by structural magnetic resonance imaging (MRI) and 2-[fluorine-18]fluoro-2-deoxy-d-glucose-positron emission tomography (FDG-PET) in 47 patients (43 with MRI) and 11 controls. We analyzed whole-brain glucose metabolism and cortical thickness in regions where FDG-uptake correlated with ISAcog. Results PD-MCI patients (N = 23) showed significantly more ISAcog than controls and patients without MCI (N = 40). When all patients who underwent FDG-PET were examined, metabolism in the bilateral superior medial frontal gyrus, anterior and midcingulate cortex negatively correlated with ISAcog (FWE-corrected p < 0.001). In PD-MCI, ISAcog was related to decreased metabolism in the right superior temporal lobe and insula (N = 13; FWE-corrected p = 0.023) as well as the midcingulate cortex (FWE-corrected p = 0.002). Cortical thickness was not associated with ISAcog in these regions. No significant correlations were found between ISAcog and glucose metabolism in controls and patients without MCI. Conclusions Similar to Alzheimer's disease, the cingulate cortex seems to be relevant in ISAcog in PD. In PD-MCI patients, ISAcog might result from a disrupted network that regulates awareness of cognition and error processes.


Sign in / Sign up

Export Citation Format

Share Document