Post-stroke affective or apathetic depression and lesion location: left frontal lobe and bilateral basal ganglia

2006 ◽  
Vol 257 (3) ◽  
pp. 149-152 ◽  
Author(s):  
Seiji Hama ◽  
Hidehisa Yamashita ◽  
Masaya Shigenobu ◽  
Atsuko Watanabe ◽  
Kaoru Kurisu ◽  
...  
Author(s):  
Qin Tao ◽  
Yajing Si ◽  
Fali Li ◽  
Peiyang Li ◽  
Yuqin Li ◽  
...  

Decision response and feedback in gambling are interrelated. Different decisions lead to different ranges of feedback, which in turn influences subsequent decisions. However, the mechanism underlying the continuous decision-feedback process is still left unveiled. To fulfill this gap, we applied the hidden Markov model (HMM) to the gambling electroencephalogram (EEG) data to characterize the dynamics of this process. Furthermore, we explored the differences between distinct decision responses (i.e. choose large or small bets) or distinct feedback (i.e. win or loss outcomes) in corresponding phases. We demonstrated that the processing stages in decision-feedback process including strategy adjustment and visual information processing can be characterized by distinct brain networks. Moreover, time-varying networks showed, after decision response, large bet recruited more resources from right frontal and right center cortices while small bet was more related to the activation of the left frontal lobe. Concerning feedback, networks of win feedback showed a strong right frontal and right center pattern, while an information flow originating from the left frontal lobe to the middle frontal lobe was observed in loss feedback. Taken together, these findings shed light on general principles of natural decision-feedback and may contribute to the design of biologically inspired, participant-independent decision-feedback systems.


2021 ◽  
pp. 155005942110636
Author(s):  
Francesco Carlo Morabito ◽  
Cosimo Ieracitano ◽  
Nadia Mammone

An explainable Artificial Intelligence (xAI) approach is proposed to longitudinally monitor subjects affected by Mild Cognitive Impairment (MCI) by using high-density electroencephalography (HD-EEG). To this end, a group of MCI patients was enrolled at IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy) within a follow-up protocol that included two evaluations steps: T0 (first evaluation) and T1 (three months later). At T1, four MCI patients resulted converted to Alzheimer’s Disease (AD) and were included in the analysis as the goal of this work was to use xAI to detect individual changes in EEGs possibly related to the degeneration from MCI to AD. The proposed methodology consists in mapping segments of HD-EEG into channel-frequency maps by means of the power spectral density. Such maps are used as input to a Convolutional Neural Network (CNN), trained to label the maps as “T0” (MCI state) or “T1” (AD state). Experimental results reported high intra-subject classification performance (accuracy rate up to 98.97% (95% confidence interval: 98.68–99.26)). Subsequently, the explainability of the proposed CNN is explored via a Grad-CAM approach. The procedure allowed to detect which EEG-channels (i.e., head region) and range of frequencies (i.e., sub-bands) resulted more active in the progression to AD. The xAI analysis showed that the main information is included in the delta sub-band and that, limited to the analyzed dataset, the highest relevant areas are: the left-temporal and central-frontal lobe for Sb01, the parietal lobe for Sb02, the left-frontal lobe for Sb03 and the left-frontotemporal region for Sb04.


2002 ◽  
Vol 8 (5) ◽  
pp. 607-622 ◽  
Author(s):  
Bruce Crosson ◽  
M. Allison Cato ◽  
Joseph R. Sadek ◽  
Didem Gökçay ◽  
Russell M. Bauer ◽  
...  

AbstractPrevious studies showed that cortex in the anterior portions of the left frontal and temporal lobes participates in generating words with emotional connotations and processing pictures with emotional content. If these cortices process the semantic attribute of emotional connotation, they should be active whenever processing emotional connotation, without respect to modality of input or mode of output. Thus, we hypothesized that they would activate during monitoring of words with emotional connotations. Sixteen normal subjects performed semantic monitoring of words with emotional connotations, animal names, and implement names during fMRI. Cortex in the anterior left frontal lobe demonstrated significant activity for monitoring words with emotional connotations compared to monitoring tone sequences, animal names, or implement names. Together, the current and previous results implicate cortex in the anterior left frontal lobe in semantic processing of emotional connotation, consistent with connections of this cortex to paralimbic association areas. Current findings also indicate that neural substrates for processing emotional connotation are independent of substrates for processing the categories of living and nonliving things.


Brain ◽  
2020 ◽  
Vol 143 (3) ◽  
pp. 844-861 ◽  
Author(s):  
Anika Stockert ◽  
Max Wawrzyniak ◽  
Julian Klingbeil ◽  
Katrin Wrede ◽  
Dorothee Kümmerer ◽  
...  

Abstract The loss and recovery of language functions are still incompletely understood. This longitudinal functional MRI study investigated the neural mechanisms underlying language recovery in patients with post-stroke aphasia putting particular emphasis on the impact of lesion site. To identify patterns of language-related activation, an auditory functional MRI sentence comprehension paradigm was administered to patients with circumscribed lesions of either left frontal (n = 17) or temporo-parietal (n = 17) cortex. Patients were examined repeatedly during the acute (≤1 week, t1), subacute (1–2 weeks, t2) and chronic phase (>6 months, t3) post-stroke; healthy age-matched control subjects (n = 17) were tested once. The separation into two patient groups with circumscribed lesions allowed for a direct comparison of the contributions of distinct lesion-dependent network components to language reorganization between both groups. We hypothesized that activation of left hemisphere spared and perilesional cortex as well as lesion-homologue cortex in the right hemisphere varies between patient groups and across time. In addition, we expected that domain-general networks serving cognitive control independently contribute to language recovery. First, we found a global network disturbance in the acute phase that is characterized by reduced functional MRI language activation including areas distant to the lesion (i.e. diaschisis) and subsequent subacute network reactivation (i.e. resolution of diaschisis). These phenomena were driven by temporo-parietal lesions. Second, we identified a lesion-independent sequential activation pattern with increased activity of perilesional cortex and bilateral domain-general networks in the subacute phase followed by reorganization of left temporal language areas in the chronic phase. Third, we observed involvement of lesion-homologue cortex only in patients with frontal but not temporo-parietal lesions. Fourth, irrespective of lesion location, language reorganization predominantly occurred in pre-existing networks showing comparable activation in healthy controls. Finally, we detected different relationships of performance and activation in language and domain-general networks demonstrating the functional relevance for language recovery. Our findings highlight that the dynamics of language reorganization clearly depend on lesion location and hence open new perspectives for neurobiologically motivated strategies of language rehabilitation, such as individually-tailored targeted application of neuro-stimulation.


1992 ◽  
Vol 160 (4) ◽  
pp. 442-460 ◽  
Author(s):  
Christos Pantelis ◽  
Thomas R. E. Barnes ◽  
Hazel E. Nelson

A syndrome of subcortical dementia has been described in conditions predominantly affecting the basal ganglia or thalamus, structures that have also been implicated in the pathogenesis of schizophrenia. There are similarities between subcortical dementia and the type II syndrome of schizophrenia, in terms of clinical features, pattern of neuropsychological deficits, pathology, biochemistry and data from brain-imaging studies. These similarities raise the possibility that certain schizophrenic symptoms, particularly negative symptoms and disturbance of movement, may reflect subcortical pathology. Neuropsychological deficits of presumed frontal lobe origin have been reported in some schizophrenic subjects. The occurrence of such deficits in a condition in which frontal lobe pathology has not been clearly demonstrated may be explicable in terms of a subcortical deafferentation of the pre-frontal cortex.


Sign in / Sign up

Export Citation Format

Share Document