The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China

2010 ◽  
Vol 161 (3) ◽  
pp. 465-482 ◽  
Author(s):  
Ben-Xun Su ◽  
Hong-Fu Zhang ◽  
Patrick Asamoah Sakyi ◽  
Yue-Heng Yang ◽  
Ji-Feng Ying ◽  
...  
Lithos ◽  
2010 ◽  
Vol 116 (1-2) ◽  
pp. 111-128 ◽  
Author(s):  
Ben-Xun Su ◽  
Hong-Fu Zhang ◽  
Patrick Asamoah Sakyi ◽  
Ji-Feng Ying ◽  
Yan-Jie Tang ◽  
...  

2002 ◽  
Vol 37 (3-4) ◽  
pp. 352-377 ◽  
Author(s):  
Jingwen Mao ◽  
Yumin Qiu ◽  
Richard Goldfarb ◽  
Zhaochong Zhang ◽  
Steve Garwin ◽  
...  

2007 ◽  
Vol 144 (5) ◽  
pp. 837-848 ◽  
Author(s):  
XIAOXIA WANG ◽  
TAO WANG ◽  
BOR-MING JAHN ◽  
NENGGAO HU ◽  
WEN CHEN

The Qinling–Dabie orogen in central China is one of the major orogenic belts in East Asia. In the eastern Dabie–Sulu region, mafic lamprophyres show the enriched signatures of old sub-continental lithospheric mantle. However, little is known about the mafic igneous rocks and their lithospheric mantle sources in the western Qinling Range. New 40Ar–39Ar age dating, major- and trace-element data, and isotopic analyses of Qinling lamprophyres reveal their differences from the Dabie Sulu lamprophyres. Biotite 40Ar–39Ar dating yielded a plateau age of 219±2 Ma, identical to the ages of rapakivi-textured granitoids in the area. The association of lamprophyre dykes and rapakivi-textured granitoids indicates that the Qinling region was a post-collisional setting at c. 220 Ma. The Qinling lamprophyres are calc-alkaline, and rich in large ion lithophile elements (e.g. Ba, K), but depleted in Nb, Ta and Ti. They show highly fractionated REE patterns with LaN>100 and HREE <10 times chondrite abundances. εNd (219 Ma) values range from −0.5 to −3.3 and initial Sr isotope values from 0.7036 to 0.7058. These features suggest generation of the lamprophyre by partial melting of a metasomatized, garnet peridotite mantle source. The Qinling lamprophyres are distinct from the Dabie–Sulu lamprophyres in emplacement age (c. 135 Ma for Dabie–Sulu) and isotopic composition, suggesting that the nature of the lithospheric mantle and geodynamic evolution of the Qinling region contrasts with that of the Dabie–Sulu region.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 515
Author(s):  
Muhammad Saleem Mughal ◽  
Chengjun Zhang ◽  
Amjad Hussain ◽  
Hafiz Ur Rehman ◽  
Dingding Du ◽  
...  

The precise timing, petrogenesis, and geodynamic significance of three granitoid bodies (Beidao granite, Caochuanpu granite, Yuanlongzhen granite, and the Roche type rock) of the Tianshui area in the Western Qinling Orogen, central China, are poorly constrained. We performed an integrated study of petrology, geochemistry, and zircon U-Pb dating to constrain their genesis and tectonic implication. Petrographic investigation of the granites shows that the rocks are mainly monzogranites. The Al saturation index (A/CNK versus SiO2) of the granitoid samples indicates meta-aluminous to peraluminous I-type granites. Their magmas were likely generated by the partial melting of igneous protoliths during the syn-collisional tectonic regime. Rare-earth-elements data further support their origin from a magma that was formed by the partial melting of lower continental crust. The Beidao, Caochuanpu, and Yuanlongzhen granites yielded U-Pb zircon weighted mean ages of 417 ± 5 Ma, 216 ± 3 Ma, and 219 ± 3 Ma, respectively. This study shows that the Beidao granite possibly formed in syn- to post-collision tectonic settings due to the subduction of the Proto-Tethys under the North China Block, and can be linked to the generally reported Caledonian orogeny (440–400 Ma) in the western segment of the North Qinling belt, whereas Yuanlongzhen and Caochuanpu granites can be linked to the widely known Indosinian orogeny (255–210 Ma). These granitoids formed due to the subduction of the oceanic lithospheres of the Proto-Tethyan Qinling and Paleo-Tethyan Qinling. The Roche type rock, tourmaline-rich, was possibly formed from the hydrothermal fluids as indicated by the higher concentrations of boron leftover during the late-stages of magmatic crystallization of the granites.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 383
Author(s):  
Wang ◽  
Liu ◽  
Wang ◽  
Zeng ◽  
Liu ◽  
...  

The large Shuangwang gold deposit (>80 t gold) is located in the Western Qinling Orogen (WQO) of central China. It is an orogenic-type gold deposit hosted in an NW-extending breccia belt in the Devonian Xinghongpu Formation. Gold mineralization of the Shuangwang deposit is featured by hydrothermal breccia ores with strata fragments cemented by hydrothermal minerals dominated by ankerite, quartz, and pyrite with minor amounts of calcite and albite. Pyrite is the major gold-hosting sulfide and the most abundant ore mineral. Crystal habits, thermoelectricity, and trace-element composition of pyrites from the main ore-forming stage of the Shuangwang gold deposit were studied by microbinocular, BHTE-06 thermoelectric coefficient measuring instrument, and high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Spatial distribution of the above data for pyrites was delineated by contour maps of morphology index, P-type frequency, and primary halo elements (e.g., supraore halo elements Ba and Sb; near-ore halo elements Pb, Zn, and Cu; and subore halo elements Co, Mo, and Bi). Based on the above results, four target areas (areas between prospecting lines 0 and 1, between lines 14 and 18 below orebody KT9; areas between prospecting lines 30 and 34, between lines 44 and 46 below orebody KT8) were put forward for deep gold exploration in the future. These targets are consistent with the depth extrapolation of proven gold orebodies, indicating the practicality of typomorphic characterization of pyrites as vector to deep/concealed gold orebodies. The effectiveness of the pyrite typomorphic parameter for deep gold prediction seems to be chemical composition, crystal habits, and then thermoelectricity.


2010 ◽  
Vol 21 (5) ◽  
pp. 641-668 ◽  
Author(s):  
Benxun Su ◽  
Hongfu Zhang ◽  
Patrick Asamoah Sakyi ◽  
Kezhang Qin ◽  
Pingping Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document