Zircon Lu-Hf isotope systematics and U–Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

Author(s):  
Orhan Karsli ◽  
Abdurrahman Dokuz ◽  
Raif Kandemir
Lithos ◽  
2018 ◽  
Vol 302-303 ◽  
pp. 312-328 ◽  
Author(s):  
Orhan Karsli ◽  
Faruk Aydin ◽  
Ibrahim Uysal ◽  
Abdurrahman Dokuz ◽  
Mustafa Kumral ◽  
...  

2017 ◽  
Author(s):  
Paul Beguelin ◽  
◽  
Michael Bizimis ◽  
Eleanor Carmen McIntosh ◽  
Brian Cousens ◽  
...  

2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


Author(s):  
Tao Qian ◽  
Zongxiu Wang ◽  
Yu Wang ◽  
Shaofeng Liu ◽  
Wanli Gao ◽  
...  

The formation and evolution of an intracontinental basin triggered via the subduction or collision of plates at continental margins can record intracontinental tectonic processes. As a typical intracontinental basin during the Jurassic, the Qaidam Basin in western China records how this extensional basin formed and evolved in response to distant subduction or collisional processes and tectonism caused by stresses transmitted from distant convergent plate margins. The Jurassic evolution of the Qaidam Basin, in terms of basin-filling architecture, sediment dispersal pattern and basin properties, remains speculative; hence, these uncertainties need to be revisited. An integrated study of the stratigraphic succession, conglomerates, U-Pb geochronology, and Hf isotopes of detrital zircons was adopted to elucidate the Jurassic evolutionary process of the Qaidam Basin. The results show that a discrete Jurassic terrestrial succession characterized by alluvial fan, braided stream, braided river delta, and lacustrine deposits developed on the western and northern margins of the Qaidam Basin. The stratigraphic succession, U-Pb age dating, and Hf isotope analysis, along with the reconstructed provenance results, suggest small-scale distribution of Lower Jurassic sediments deposited via autochthonous sedimentation on the western margin of the basin, with material mainly originating from the Altyn Tagh Range. Lower Jurassic sediments in the western segment of the northern basin were shed from the Qilian Range (especially the South Qilian) and Eastern Kunlun Range. And coeval sediments in the eastern segment of the northern basin were originated from the Quanji massif. During the Middle-Late Jurassic, the primary source areas were the Qilian Range and Eastern Kunlun Range, which fed material to the whole basin. The Jurassic sedimentary environment in the Qaidam Basin evolved from a series of small-scale, scattered, and rift-related depressions distributed on the western and northern margins during the Early Jurassic to a larger, extensive, and unified depression occupying the whole basin in the Middle Jurassic. The Altyn Tagh Range rose to a certain extent during the Early Jurassic but lacked large-scale strike-slip tectonism throughout the Jurassic. At that time, the North Qaidam tectonic belt had not yet been uplifted and did not shed material into the basin during the Jurassic. The Qaidam Basin experienced intracontinental extensional tectonism with a northeast-southwest trend throughout the Jurassic in response to far-field effects driven by the sequential northward or northeastward amalgamation of blocks to the southern margin of the Qaidam Block and successive accretion of the Qiangtang Block and Lhasa Block onto the southern Eurasian margin during the Late Triassic−Early Jurassic and Late Jurassic−Early Cretaceous, respectively.


2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.


2017 ◽  
Vol 125 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Abdurrahman Dokuz ◽  
Emre Aydınçakır ◽  
Raif Kandemir ◽  
Orhan Karslı ◽  
Wolfgang Siebel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document