Jurassic evolution of the Qaidam Basin in western China: Constrained by stratigraphic succession, detrital zircon U-Pb geochronology and Hf isotope analysis

Author(s):  
Tao Qian ◽  
Zongxiu Wang ◽  
Yu Wang ◽  
Shaofeng Liu ◽  
Wanli Gao ◽  
...  

The formation and evolution of an intracontinental basin triggered via the subduction or collision of plates at continental margins can record intracontinental tectonic processes. As a typical intracontinental basin during the Jurassic, the Qaidam Basin in western China records how this extensional basin formed and evolved in response to distant subduction or collisional processes and tectonism caused by stresses transmitted from distant convergent plate margins. The Jurassic evolution of the Qaidam Basin, in terms of basin-filling architecture, sediment dispersal pattern and basin properties, remains speculative; hence, these uncertainties need to be revisited. An integrated study of the stratigraphic succession, conglomerates, U-Pb geochronology, and Hf isotopes of detrital zircons was adopted to elucidate the Jurassic evolutionary process of the Qaidam Basin. The results show that a discrete Jurassic terrestrial succession characterized by alluvial fan, braided stream, braided river delta, and lacustrine deposits developed on the western and northern margins of the Qaidam Basin. The stratigraphic succession, U-Pb age dating, and Hf isotope analysis, along with the reconstructed provenance results, suggest small-scale distribution of Lower Jurassic sediments deposited via autochthonous sedimentation on the western margin of the basin, with material mainly originating from the Altyn Tagh Range. Lower Jurassic sediments in the western segment of the northern basin were shed from the Qilian Range (especially the South Qilian) and Eastern Kunlun Range. And coeval sediments in the eastern segment of the northern basin were originated from the Quanji massif. During the Middle-Late Jurassic, the primary source areas were the Qilian Range and Eastern Kunlun Range, which fed material to the whole basin. The Jurassic sedimentary environment in the Qaidam Basin evolved from a series of small-scale, scattered, and rift-related depressions distributed on the western and northern margins during the Early Jurassic to a larger, extensive, and unified depression occupying the whole basin in the Middle Jurassic. The Altyn Tagh Range rose to a certain extent during the Early Jurassic but lacked large-scale strike-slip tectonism throughout the Jurassic. At that time, the North Qaidam tectonic belt had not yet been uplifted and did not shed material into the basin during the Jurassic. The Qaidam Basin experienced intracontinental extensional tectonism with a northeast-southwest trend throughout the Jurassic in response to far-field effects driven by the sequential northward or northeastward amalgamation of blocks to the southern margin of the Qaidam Block and successive accretion of the Qiangtang Block and Lhasa Block onto the southern Eurasian margin during the Late Triassic−Early Jurassic and Late Jurassic−Early Cretaceous, respectively.

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 453
Author(s):  
Wenhuan Li ◽  
Tailiang Fan ◽  
Zhiqian Gao ◽  
Zhixiong Wu ◽  
Ya’nan Li ◽  
...  

The Lower Jurassic reservoir in the Niudong area of the northern margin of Qaidam Basin is a typical low permeability sandstone reservoir and an important target for oil and gas exploration in the northern margin of the Qaidam Basin. In this paper, casting thin section analysis, scanning electron microscopy, X-ray diffraction, and stable isotope analysis among other methods were used to identify the diagenetic characteristics and evolution as well as the main factors influencing reservoir quality in the study area. The predominant types of sandstone in the study area are mainly feldspathic lithic sandstone and lithic arkose, followed by feldspathic sandstone and lithic sandstone. Reservoir porosity ranges from 0.01% to 19.5% (average of 9.9%), and permeability ranges from 0.01 to 32.4 mD (average of 3.8 mD). The reservoir exhibits robust heterogeneity and its quality is mainly influenced by diagenesis. The Lower Jurassic reservoir in the study area has undergone complex diagenesis and reached the middle diagenesis stage (A–B). The quantitative analysis of pore evolution showed that the porosity loss rate caused by compaction and cementation was 69.0% and 25.7% on average, and the porosity increase via dissolution was 4.8% on average. Compaction was the main cause of the reduction in the physical property of the reservoir in the study area, while cementation and dissolution were the main causes of reservoir heterogeneity. Cementation can reduce reservoir space by filling primary intergranular pores and secondary dissolved pores via cementation such as a calcite and illite/smectite mixed layer, whereas high cement content increased the compaction resistance of particles to preserve certain primary pores. δ13C and δ18O isotopes showed that the carbonate cement in the study area was the product of hydrocarbon generation by organic matter. The study area has conditions that are conductive to strong dissolution and mainly occur in feldspar dissolution, which produces a large number of secondary pores. It is important to improve the physical properties of the reservoir. Structurally, the Niudong area is a large nose uplift structure with developed fractures, which can be used as an effective oil and gas reservoir space and migration channel. In addition, the existence of fractures provides favorable conditions for the uninterrupted entry of acid fluid into the reservoir, promoting the occurrence of dissolution, and ultimately improves the physical properties of reservoirs, which is mainly manifested in improving the reservoir permeability.


2014 ◽  
Vol 281 (1786) ◽  
pp. 20132624 ◽  
Author(s):  
Ben Thuy ◽  
Steffen Kiel ◽  
Alfréd Dulai ◽  
Andy S. Gale ◽  
Andreas Kroh ◽  
...  

Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic.


2019 ◽  
Vol 181 ◽  
pp. 103908 ◽  
Author(s):  
Jianguo Yin ◽  
Shengyin Zhang ◽  
Xinchuan Lu ◽  
Zhixiong Wu ◽  
Hui guo ◽  
...  

2012 ◽  
Vol 94-95 ◽  
pp. 73-78
Author(s):  
Zhenhua Liu ◽  
Zhigang Cheng ◽  
Jie Wu ◽  
Jianhua Zhang

2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


The Auk ◽  
2007 ◽  
Vol 124 (4) ◽  
pp. 1149-1157
Author(s):  
J. Mark Hipfner ◽  
Mathieu R. Charette ◽  
Gwylim S. Blackburn

Abstract Large-scale oceanographic processes are the main drivers of seabird breeding success, but small-scale processes, though not as well understood, can also be important. We compared the success of Tufted Puffins (Fratercula cirrhata) breeding at two subcolonies only 1.5 km apart on Triangle Island, British Columbia, Canada, 2002–2005. In addition, we used stable-isotope analysis to test the hypothesis that parental foraging strategies differed between the two subcolonies, potentially underlying the variation in breeding success. Success was concordant across years at the two sites but, overall, Tufted Puffins bred more successfully at Strata Rock than at Puffin Rock. They raised chicks in all four years at Strata Rock, but in only three years at Puffin Rock; in two of those three years, Strata Rock chicks were, on average, 60 g and 100 g heavier than Puffin Rock chicks just before fledging. Discriminant analysis of carbon and nitrogen stable-isotope ratios in egg yolk and chick blood in 2004 and 2005 indicated that parental foraging differed between the two subcolonies, with both spatial (δ13C) and trophic-level (δ15N) differences involved. Thus, our study demonstrates the existence of foraging asymmetries in a pelagic seabird at a small spatial scale (between subcolonies), complementing patterns found at larger scales (between colonies). Moreover, the foraging asymmetries were associated with inequalities in fitness measures. We conclude that small-scale processes—in this case, systematic differences in the foraging ecology of local groups—can interact with large-scale oceanographic processes to determine seabird breeding success. Variation sous-coloniale du succès de reproduction de Fratercula cirrhata: Association avec l'écologie de la quête alimentaire et implications


Sign in / Sign up

Export Citation Format

Share Document