scholarly journals Correction to: Isotopic evolution of prehistoric magma sources of Mt. Etna, Sicily: Insights from the Valle Del Bove

2021 ◽  
Vol 176 (9) ◽  
Author(s):  
P. D. Kempton ◽  
A. Spence ◽  
H. Downes ◽  
J. Blichert-Toft ◽  
J. G. Bryce ◽  
...  
2021 ◽  
Vol 176 (7) ◽  
Author(s):  
P. D. Kempton ◽  
A. Spence ◽  
H. Downes ◽  
J. Blichert-Toft ◽  
J. G. Bryce ◽  
...  

AbstractMount Etna in NE Sicily occupies an unusual tectonic position in the convergence zone between the African and Eurasian plates, near the Quaternary subduction-related Aeolian arc and above the down-going Ionian oceanic slab. Magmatic evolution broadly involves a transition from an early tholeiitic phase (~ 500 ka) to the current alkaline phase. Most geochemical investigations have focussed on either historic (> 130-years old) or recent (< 130-years old) eruptions of Mt. Etna or on the ancient basal lavas (ca. 500 ka). In this study, we have analysed and modelled the petrogenesis of alkalic lavas from the southern wall of the Valle del Bove, which represent a time span of Mt. Etna’s prehistoric magmatic activity from ~ 85 to ~ 4 ka. They exhibit geochemical variations that distinguish them as six separate lithostratigraphic and volcanic units. Isotopic data (143Nd/144Nd = 0.51283–0.51291; 87Sr/86Sr = 0.70332–0.70363; 176Hf/177Hf = 0.28288–0.28298; 206Pb/204Pb = 19.76–20.03) indicate changes in the magma source during the ~ 80 kyr of activity that do not follow the previously observed temporal trend. The oldest analysed Valle del Bove unit (Salifizio-1) erupted basaltic trachyandesites with variations in 143Nd/144Nd and 87Sr/86Sr ratios indicating a magma source remarkably similar to that of recent Etna eruptions, while four of the five subsequent units have isotopic compositions resembling those of historic Etna magmas. All five magma batches are considered to be derived from melting of a mixture of spinel lherzolite and pyroxenite (± garnet). In contrast, the sixth unit, the main Piano Provenzana formation (~ 42–30 ka), includes the most evolved trachyandesitic lavas (58–62 wt% SiO2) and exhibits notably lower 176Hf/177Hf, 143Nd/144Nd, and 206Pb/204Pb ratios than the other prehistoric Valle del Bove units. This isotopic signature has not yet been observed in any other samples from Mt. Etna and we suggest that the parental melts of the trachyandesites were derived predominantly from ancient pyroxenite in the mantle source of Etna.


2021 ◽  
Vol 11 (10) ◽  
pp. 4630
Author(s):  
Alessandro Bonforte ◽  
Flavio Cannavò ◽  
Salvatore Gambino ◽  
Francesco Guglielmino

We propose a multi-temporal-scale analysis of ground deformation data using both high-rate tilt and GNSS measurements and the DInSAR and daily GNSS solutions in order to investigate a sequence of four paroxysmal episodes of the Voragine crater occurring in December 2015 at Mt. Etna (Italy). The analysis aimed at inferring the magma sources feeding a sequence of very violent eruptions, in order to understand the dynamics and to image the shallow feeding system of the volcano that enabled such a rapid magma accumulation and discharge. The high-rate data allowed us to constrain the sources responsible for the fast and violent dynamics of each paroxysm, while the cumulated deformation measured by DInSAR and daily GNSS solutions, over a period of 12 days encompassing the entire eruptive sequence, also showed the deeper part of the source involved in the considered period, where magma was stored. We defined the dynamics and rates of the magma transfer, with a middle-depth storage of gas-rich magma that charges, more or less continuously, a shallower level where magma stops temporarily, accumulating pressure due to the gas exsolution. This machine-gun-like mechanism could represent a general conceptual model for similar events at Etna and at all volcanoes.


2020 ◽  
Author(s):  
Johannes Hammerli

&lt;p&gt;The long-lived radiogenic isotope systems Lu-Hf and Sm-Nd have been widely used by geochemists to study magma sources and crustal residential times of (igneous) rocks in order to understand how early crust formed and to model the production rate and volume of continental crust on global and regional-scales during the last ~4.4 Ga. However, while throughout most of Earth&amp;#8217;s history Nd and Hf isotope signatures in terrestrial rocks are well correlated due to their very similar geochemical behavior, some of Earth&amp;#8217;s oldest rocks show an apparent inconsistency in their Nd and Hf isotope signatures. While Hf isotopes in early Archean rocks are generally (near) chondritic, Nd isotope signatures can be distinctly super- or sub-chondritic. The super-chondritic Nd isotope values in Eoarchean samples would suggest that these rocks are derived from a mantle reservoir depleted by prior crust extraction. The chondritic Hf isotope values, on the other hand, support a mantle source from which no significant volume of crust had been extracted. While a range of different processes, some of them speculative, might explain this Hf-Nd isotope paradox, recent research [1, 2] has shown that relatively simple, post-magmatic, open-system processes can explain decoupling of the typically correlative Hf-Nd isotope signatures. This talk will focus on the importance of identifying Nd-bearing accessory minerals in (Archean) rocks to understand how the Sm-Nd isotope system is controlled and how in situ isotope and trace element analyses by LA-(MC)-ICP-MS in combination with detailed petrographic observations help to understand when and via which processes the two isotope systems become decoupled. Reconstructing the isotopic evolution of the different isotope systems since formation of the protoliths has important implications for our understanding of early crust formation and questions some of the proposed current models for early crust extraction from the mantle.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;[1] Hammerli et al. (2019) Chem. Geol 2; [2] Fisher et al. (2020) EPSL&lt;/p&gt;


The search for chemical characteristics of magma sources is usually done by analysing the magmas themselves. This indirect approach has limitations: clearly the magma has only some of the source’s characteristics. What we require are process-independent chemical characteristics, analogous to the isotopic abundance of radiogenic daughter isotopes that have been used so successfully in defining magma sources. Process-independent chemical characteristics in mid-oceanic ridge, oceanic island and island-arc basalts (m.o.r.b., o.i.b., i.a.b.) have been used to identify contrasting chemical characteristics of mantle peridotite from these three tectonically distinct regions. As an example, the abundance ratios of one group of elements (e.g. Cs, K, Rb, Ba, U, and perhaps Th) relative to another group (e.g. light r.e.e., Zr, Hf) are found to be fractionation-independent during most shallow-level basalt fractionation. These ratios are presumed to reflect the chemical characteristics of the mantle source of basalt from the three tectonic environments. In particular the ratios indicate the large cation-depleted nature of all m.o.r.b. and most o.i.b. peridotite sources. In common with many other island arcs, the abundance ratios are consistently higher in mantle under the Aleutian arc than in adjacent non-arc mantle represented by oceanic ridge, oceanic island, and back-arc basalts. The contention that subduction of sediment could result in arc mantle sources with these high ratios is substantiated by trace element analyses of Ba and Cs-rich deep sea sediments of the type that are being subducted at present at the Aleutian trench. The importance of recycling of sediment into the mantle at island arcs as an important control on the trace element (and isotopic) evolution of the mantle is indicated.


2010 ◽  
Vol 3 (1) ◽  
pp. 1-16 ◽  
Author(s):  
S. La Delfa ◽  
F. Vizzini ◽  
G. Patanè
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


Sign in / Sign up

Export Citation Format

Share Document