Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome?

Author(s):  
Ana Gil-Fernández ◽  
Sergey Matveevsky ◽  
Marta Martín-Ruiz ◽  
Marta Ribagorda ◽  
María Teresa Parra ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


2001 ◽  
Vol 13 (8) ◽  
pp. 665 ◽  
Author(s):  
Jennifer A. Marshall Graves

In mammals, sex is determined by an XY male:XX female sex chromosome system in which a male-dominant gene on the Y chromosome (SRY) determines testis formation. Sex chromosomes evolved from an ordinary autosome pair as the Y chromosome was progressively degraded. The Y chromosome has lost nearly all of its 1500 original genes, and those that survived did so because they evolved a critical role in male determination or differentiation. SRY is typical of Y-borne genes. Comparative gene mapping and sequencing shows that SRY arose quite recently as a degraded version of the SOX3 gene on the X chromosome. SOX3 is expressed predominantly in brain, and so is more likely to be a brain-determining than a testis-determining gene. The male-dominant action of SRY may be an illusion, as its structure suggests that it works by interfering with the action of a related gene, which in turn inhibits testis development. This hypothesis can give a good account of how a brain-determining gene acquired a role in testis determination via differential dosage of SOX3. SRY has no central role in sex determination and it can be replaced as a trigger and lost, as have many other Y-borne genes in recent evolutionary history. The absence of SRY in two species of the mole vole (Ellobius) suggests that its useful life is already running out.


2004 ◽  
Vol 83 (10) ◽  
pp. 771-775 ◽  
Author(s):  
R. Lähdesmäki ◽  
L. Alvesalo

Studies on individuals with sex chromosome anomalies have demonstrated the promoting effect of the Y chromosome on tooth crown enamel and dentin growth. The present research investigated permanent tooth root lengths in 47,XYY males. The measurements were made from panoramic radiographs. The results indicate longer tooth roots in 47,XYY males compared with those in control males and females. The promoting effect of the Y chromosome on dental growth thus continues in the form of root dentin after the completion of crown growth. The results, together with those on tooth crown sizes in 47,XYY males, suggest that growth excesses are evident and final, beginning a few months after birth and continuing up to the age of 14 years, at least. The excess root dentin growth in 47,XYY males, as well as sexual dimorphism in the growth of crown and root dentin, might be caused by the same factor on the Y chromosome.


2019 ◽  
Author(s):  
Pui-Pik Law ◽  
Ping-Kei Chan ◽  
Kirsten McEwen ◽  
Huihan Zhi ◽  
Bing Liang ◽  
...  

SummarySex differences in growth rate in very early embryos have been recognized in a variety of mammals and attributed to sex-chromosome complement effects as they occur before overt sexual differentiation. We previously found that sex-chromosome complement, rather than sex hormones regulates heterochromatin-mediated silencing of a transgene and autosomal gene expression in mice. Here, sex dimorphism in proliferation was investigated. We confirm that male embryonic fibroblasts proliferate faster than female fibroblasts and show that this proliferation advantage is completely dependent upon heterochromatin protein 1 gamma (HP1γ). To determine whether this sex-regulatory effect of HP1γ was a more general phenomenon, we performed RNA sequencing on MEFs derived from males and females, with or without HP1γ. Strikingly, HP1γ was found to be crucial for regulating nearly all sexually dimorphic autosomal gene expression because deletion of the HP1γ gene in males abolished sex differences in autosomal gene expression. The identification of a key epigenetic modifier as central in defining gene expression differences between males and females has important implications for understanding physiological sex differences and sex bias in disease.


2019 ◽  
Author(s):  
Kimberly C. Olney ◽  
Sarah M. Brotman ◽  
Jocelyn P. Andrews ◽  
Valeria A. Valverde-Vesling ◽  
Melissa A. Wilson

AbstractBackgroundHuman X and Y chromosomes share an evolutionary origin and, as a consequence, sequence similarity. We investigated whether sequence homology between the X and Y chromosomes affects alignment of RNA-Seq reads and estimates of differential expression. We tested the effects of using reference genomes and reference transcriptomes informed by the sex chromosome complement of the sample’s genome on measurements of RNA-Seq abundance and sex differences in expression.ResultsThe default genome includes the entire human reference genome (GRCh38), including the entire sequence of the X and Y chromosomes. We created two sex chromosome complement informed reference genomes. One sex chromosome complement informed reference genome was used for samples that lacked a Y chromosome; for this reference genome version, we hard-masked the entire Y chromosome. For the other sex chromosome complement informed reference genome, to be used for samples with a Y chromosome, we hard-masked only the pseudoautosomal regions of the Y chromosome, because these regions are duplicated identically in the reference genome on the X chromosome. We analyzed transcript abundance in the whole blood, brain cortex, breast, liver, and thyroid tissues from 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. Each sample was aligned twice; once to the default reference genome and then independently aligned to a reference genome informed by the sex chromosome complement of the sample, repeated using two different read aligners, HISAT and STAR. We then quantified sex differences in gene expression using featureCounts to get the raw count estimates followed by Limma/Voom for normalization and differential expression. We additionally created sex chromosome complement informed transcriptome references for use in pseudo-alignment using Salmon. Transcript abundance was quantified twice for each sample; once to the default target transcripts and then independently to target transcripts informed by the sex chromosome complement of the sample.ConclusionsWe show that regardless of the choice of read aligner, using an alignment protocol informed by the sex chromosome complement of the sample results in higher expression estimates on the pseudoautosomal regions of the X chromosome in both genetic male and genetic female samples, as well as an increased number of unique genes being called as differentially expressed between the sexes. We additionally show that using a pseudo-alignment approach informed on the sex chromosome complement of the sample eliminates Y-linked expression in female XX samples.Author summaryThe human X and Y chromosomes share an evolutionary origin and sequence homology, including regions of 100% identity; this sequence homology can result in reads misaligning between the sex chromosomes, X and Y. We hypothesized that misalignment of reads on the sex chromosomes would confound estimates of transcript abundance if the sex chromosome complement of the sample is not accounted for during the alignment step. For example, because of shared sequence similarity, X-linked reads could misalign to the Y chromosome. This is expected to result in reduced expression for regions between X and Y that share high levels of homology. For this reason, we tested the effect of using a default reference genome versus a reference genome informed by the sex chromosome complement of the sample on estimates of transcript abundance in human RNA-Seq samples from whole blood, brain cortex, breast, liver, and thyroid tissues of 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. We found that using a reference genome with the sex chromosome complement of the sample resulted in higher measurements of X-linked gene transcription for both male and female samples and more differentially expressed genes on the X and Y chromosomes. We additionally investigated the use of a sex chromosome complement informed transcriptome reference index for alignment free quantification protocols. We observed no Y-linked expression in female XX samples only when the transcript quantification was performed using a transcriptome reference index informed on the sex chromosome complement of the sample. We recommend that future studies requiring aligning RNA-Seq reads to a reference genome or pseudo-alignment with a transcriptome reference should consider the sex chromosome complement of their samples prior to running default pipelines.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009121
Author(s):  
Benjamin L. S. Furman ◽  
Caroline M. S. Cauret ◽  
Martin Knytl ◽  
Xue-Ying Song ◽  
Tharindu Premachandra ◽  
...  

In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among—and even within—species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.


Genetics ◽  
1974 ◽  
Vol 78 (4) ◽  
pp. 1127-1142
Author(s):  
Richard C Gethmann

ABSTRACT Two second chromosome, EMS-induced, meiotic mutants which cause an increase in second chromosome nondisjunction are described. The first mutant is recessive and causes an increase in second chromosome nondisjunction in both males and females. It causes no increase in nondisjunction of the sex chromosomes in either sex, nor of the third chromosome in females. No haplo-4-progeny were recovered from either sex. Thus, it appears that this mutant, which is localized to the second chromosome, affects only second chromosome disjunction and acts in both sexes.—The other mutant affects chromosome disjunction in males and has no effect in females. Nondisjunction occurs at the first meiotic division. Sex chromosome disjunction in the presence of this mutant is similar to that of sc4sc8, with an excess of X and nullo-XY sperm relative to Y and XY sperm. In some lines, there is an excess of nullo-2 sperm relative to diplo-2 sperm, which appears to be regulated, in part, by the Y chromosome. A normal Y chromosome causes an increase in nullo-2 sperm, where BsY does not. There is also a high correlation between second and sex chromosome nondisjunction. Nearly half of the second chromosome exceptions are also nondisjunctional for the sex chromosomes. Among the double exceptions, there is an excess of XY nullo-2 and nullo-XY diplo-2 gametes. Meiotic drive, chromosome loss and nonhomologous pairing are considered as possible explanations for the double exceptions.


2017 ◽  
Author(s):  
Emily J. Brown ◽  
Alison H. Nguyen ◽  
Doris Bachtrog

AbstractThe Drosophila Y-chromosome is gene poor and mainly consists of silenced, repetitive DNA. Nonetheless, the Y influences expression of hundreds of genes genome-wide, possibly by sequestering key components of the heterochromatin machinery away from other positions in the genome. To test the influence of the Y chromosome on the genome-wide chromatin landscape, we assayed the genomic distribution of histone modifications associated with gene activation (H3K4me3), or heterochromatin (H3K9me2 and H3K9me3) in fruit flies with varying sex chromosome complements (X0, XY and XYY males; XX and XXY females). Consistent with the general deficiency of active chromatin modifications on the Y, we find that Y gene dose has little influence on the genomic distribution of H3K4me3. In contrast, both the presence and the number of Y-chromosomes strongly influence genome-wide enrichment patterns of repressive chromatin modifications. Highly repetitive regions such as the pericentromeres, the dot, and the Y chromosome (if present) are enriched for heterochromatic modifications in wildtype males and females, and even more strongly in X0 flies. In contrast, the additional Y chromosome in XYY males and XXY females diminishes the heterochromatic signal in these normally silenced, repeat-rich regions, which is accompanied by an increase in expression of Y-linked repeats. We find hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila. Thus, Y-chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex-biased gene expression and sexual dimorphisms.


1984 ◽  
Vol 37 (3) ◽  
pp. 131 ◽  
Author(s):  
GM McKay ◽  
LR McQuade ◽  
JD Murray ◽  
SR von Sturmer

A regular system of sex chromosome mosaicism in a somatic tissue is reported in H. lemuroides. Spermatogonial mitosis and cultured fibroblast cells are 2n = 20, while most bone marrow cells from both males and females are 2n = 19. In males the Y chromosome is lost and in females one of the X chromosomes.


Sign in / Sign up

Export Citation Format

Share Document