scholarly journals Sex differences in gene expression and proliferation are dependent on the epigenetic modifier HP1γ

2019 ◽  
Author(s):  
Pui-Pik Law ◽  
Ping-Kei Chan ◽  
Kirsten McEwen ◽  
Huihan Zhi ◽  
Bing Liang ◽  
...  

SummarySex differences in growth rate in very early embryos have been recognized in a variety of mammals and attributed to sex-chromosome complement effects as they occur before overt sexual differentiation. We previously found that sex-chromosome complement, rather than sex hormones regulates heterochromatin-mediated silencing of a transgene and autosomal gene expression in mice. Here, sex dimorphism in proliferation was investigated. We confirm that male embryonic fibroblasts proliferate faster than female fibroblasts and show that this proliferation advantage is completely dependent upon heterochromatin protein 1 gamma (HP1γ). To determine whether this sex-regulatory effect of HP1γ was a more general phenomenon, we performed RNA sequencing on MEFs derived from males and females, with or without HP1γ. Strikingly, HP1γ was found to be crucial for regulating nearly all sexually dimorphic autosomal gene expression because deletion of the HP1γ gene in males abolished sex differences in autosomal gene expression. The identification of a key epigenetic modifier as central in defining gene expression differences between males and females has important implications for understanding physiological sex differences and sex bias in disease.

2021 ◽  
Author(s):  
Sarah R Ocanas ◽  
Victor A Ansere ◽  
Kyla B Tooley ◽  
Niran Hadad ◽  
Ana J Chucair-Elliott ◽  
...  

Sex differences in the brain as they relate to health and disease are often overlooked in experimental models. Many neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, differ in prevalence between males and females. Sex differences originate either from differential gene expression on sex chromosomes or from hormonal differences, either directly or indirectly. To disentangle the relative contributions of genetic sex (XX v. XY) and gonadal sex (ovaries v. testes) to the regulation of hippocampal sex effects, we use the "sex-reversal" Four Core Genotype (FCG) mouse model which uncouples sex chromosome complement from gonadal sex. Transcriptomic and epigenomic analyses of hippocampal RNA and DNA from ~12 month old FCG mice, reveals differential regulatory effects of sex chromosome content and gonadal sex on X- versus autosome-encoded gene expression and DNA modification patterns. Gene expression and DNA methylation patterns on the X chromosome were driven primarily by sex chromosome content, not gonadal sex. The majority of DNA methylation changes involved hypermethylation in the XX genotypes (as compared to XY) in the CpG context, with the largest differences in CpG islands, promoters, and CTCF binding sites. Autosomal gene expression and DNA modifications demonstrated regulation by sex chromosome complement and gonadal sex. These data demonstrate the importance of sex chromosomes themselves, independent of hormonal status, in regulating hippocampal sex effects. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosome regulate autosomes, and differentiate organizational from activational hormonal effects.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Hajar Amini ◽  
Bodie Knepp ◽  
Heather Hull ◽  
Paulina Carmona-Mora ◽  
Marisa Hakoupian ◽  
...  

Objective: Ischemic stroke (IS) is sexually dimorphic for risk factors, age, heritability, causes, treatment, and outcome. We identified transcriptional correlates with 90-day outcome that differed between male and female IS subjects. Methods: RNA from 72 samples from 2 peripheral blood draws (at ≤3 and 24h post IS onset) was analyzed on Affymetrix U133 Plus 2 microarrays. These represented samples from 36 CLEAR trial IS patients treated with tPA with or without eptifibatide after the first blood sample within 3 hours of stroke onset. Changes in gene expression levels (deltaGE) between 3h and 24h were calculated and the association with percent NIH Stroke Scale (NIHSS) improvement from 3h to 90 days (% Improvement) examined. We used mixed-effects linear regression, including Treatment, Age, Sex, Vascular Risk Factors, 3h NIHSS, % Improvement, and a Sex * % Improvement interaction. Sex differences in association of gene expression with % Improvement were determined by examining the Sex * % Improvement interaction term, p<0.005 was considered statistically significant. Results: 577 genes correlated differently with % Improvement in IS males and females. These included matrix metalloproteinases (MMPs), which play a major role in BBB dysfunction and outcomes post IS. MMP11 , MMP14 and MM17 correlated with % Improvement in opposite direction in males and females. Inflammatory genes like IL-27 , implicated in infarct volume and stroke outcome, and ABC transporters ( ABCC9 ) also had opposite correlation with % Improvement in males and females. Calmodulin 1 ( CAML1 ) was also sexually dimorphic, and a SNP in CALM1 has been implicated in IS risk and blood coagulation in female IS patients. EIF2 signaling, a major protein synthesis pathway was activated in males (adj. p = 1e-8), while suppressed in females (adj. p value = 1e-9). Protein synthesis and associated unfolded protein response cascade have previously been implicated in stroke outcome. Conclusions: The identified sexually dimorphic gene expression associated with 90-day improvement might relate to sex differences in blood immune and clotting pathways. The findings expand our understanding of the genomic underpinnings associated with stroke outcome and may serve as potential sex-specific treatment targets.


Endocrinology ◽  
2020 ◽  
Vol 161 (9) ◽  
Author(s):  
Samuel J Harp ◽  
Mariangela Martini ◽  
Wendy J Lynch ◽  
Emilie F Rissman

Abstract The organizational/activational hypothesis suggests that gonadal steroid hormones like testosterone (T) and estradiol (E2) are important at 2 different times during the lifespan when they perform 2 different functions. First steroids “organize” brain structures early in life and during puberty, and in adults these same hormones “activate” sexually dimorphic behaviors. This hypothesis has been tested and proven valid for a large number of behaviors (learning, memory, social, and sexual behaviors). Sex differences in drug addiction are well established both for humans and animal models. Previous research in this field has focused primarily on cocaine self-administration by rats. Traditionally, observed sex differences have been explained by the sex-specific concentrations of gonadal hormones present at the time of the drug-related behavior. Studies with gonadectomized rodents establishes an activational role for E2 that facilitates vulnerability in females, and when E2 is combined with progesterone, addiction is attenuated. Literature on organizational actions of steroids is sparse but predicts that T, after it is aromatized to E2, changes aspects of the neural reward system. Here we summarize these data and propose that sex chromosome complement also plays a role in determining sex-specific drug-taking behavior. Future research is needed to disentangle the effects of hormones and sex chromosome complement, and we propose the four core genotype mouse model as an effective tool for answering these questions.


2017 ◽  
Author(s):  
Armin Raznahan ◽  
Neelroop Parikshak ◽  
Vijayendran Chandran ◽  
Jonathan Blumenthal ◽  
Liv Clasen ◽  
...  

ABSTRACTA fundamental question in the biology of sex-differences has eluded direct study in humans: how does sex chromosome dosage (SCD) shape genome function? To address this, we developed a systematic map of SCD effects on gene function by analyzing genome-wide expression data in humans with diverse sex chromosome aneuploidies (XO, XXX, XXY, XYY, XXYY). For sex chromosomes, we demonstrate a pattern of obligate dosage sensitivity amongst evolutionarily preserved X-Y homologs, and update prevailing theoretical models for SCD compensation by detecting X-linked genes whose expression increases with decreasing X- and/or Y-chromosome dosage. We further show that SCD-sensitive sex chromosome genes regulate specific co-expression networks of SCD-sensitive autosomal genes with critical cellular functions and a demonstrable potential to mediate previously documented SCD effects on disease. Our findings detail wide-ranging effects of SCD on genome function with implications for human phenotypic variation.SIGNIFICANCE STATEMENTSex chromosome dosage (SCD) effects on human gene expression are central to the biology of sex differences and sex chromosome aneuploidy syndromes, but challenging to study given the co-segregation of SCD and gonadal status. We address this obstacle by systematically modelling SCD effects on genome wide expression data from a large and rare cohort of individuals with diverse SCDs (XO, XX, XXX, XXXX, XY, XXY, XYY, XXYY, XXXXY). Our findings update current models of sex chromosome biology by (i) pinpointing a core set of X- and Y-linked genes with “obligate” SCD sensitivity, (ii) discovering several non-canonical modes of X-chromosome dosage compensation, and (iii) dissecting complex regulatory effects of X-chromosome dosage on large autosomal gene networks with key roles in cellular functioning.


2002 ◽  
Vol 80 (9) ◽  
pp. 1578-1583 ◽  
Author(s):  
Christopher P Yourth ◽  
Mark R Forbes ◽  
Robert L Baker

A few studies have shown that male and female invertebrates differ in immunity and that these differences appear related to differences in sexual dimorphism and gender differences in life histories. Melanotic encapsulation of foreign objects in insects is one form of immunity. The damselfly Lestes forcipatus Rambur is moderately sexually dimorphic, and much is known about patterns of mass gain in congeners relating to differences in life history between males and females. In this study, females were more immunoresponsive than males under controlled temperatures, following emergence, and at a time when parasitic mites were challenging these hosts. However, males and females that overlapped in mass at emergence did not differ in their immune responses. Males in better condition at emergence were more immunoresponsive than lighter males, but this relation was not found in females. Sex differences in immune expression may have implications for how females versus males are able to deal with challenges from parasites, under varying environmental conditions.


2014 ◽  
Vol 306 (3) ◽  
pp. R175-R184 ◽  
Author(s):  
Florencia M. Dadam ◽  
Ximena E. Caeiro ◽  
Carla D. Cisternas ◽  
Ana F. Macchione ◽  
María J. Cambiasso ◽  
...  

Previous studies indicate a sex chromosome complement (SCC) effect on the angiotensin II-sexually dimorphic hypertensive and bradycardic baroreflex responses. We sought to evaluate whether SCC may differentially modulate sexually dimorphic-induced sodium appetite and specific brain activity due to physiological stimulation of the rennin angiotensin system. For this purpose, we used the “four core genotype” mouse model, in which the effect of gonadal sex and SCC is dissociated, allowing comparisons of sexually dimorphic traits between XX and XY females as well as in XX and XY males. Gonadectomized mice were sodium depleted by furosemide (50 mg/kg) and low-sodium diet treatment; control groups were administered with vehicle and maintained on normal sodium diet. Twenty-one hours later, the mice were divided into two groups: one group was submitted to the water-2% NaCl choice intake test, while the other group was perfused and their brains subjected to the Fos-immunoreactivity (FOS-ir) procedure. Sodium depletion, regardless of SCC (XX or XY), induced a significantly lower sodium and water intake in females than in males, confirming the existence in mice of sexual dimorphism in sodium appetite and the organizational involvement of gonadal steroids. Moreover, our results demonstrate a SCC effect on induced brain FOS-ir, showing increased brain activity in XX-SCC mice at the paraventricular nucleus, nucleus of the solitary tract, and lateral parabrachial nucleus, as well as an XX-SCC augmented effect on sodium depletion-induced brain activity at two circumventricular organs, the subfornical organ and area postrema, nuclei closely involved in fluid and blood pressure homeostasis.


Author(s):  
Daniel Enrique Rodriguez Bauza ◽  
Patricia Silveyra

Exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma (a sexually dimorphic disease) experience EIB; however, sex differences in EIB have not been studied extensively. With the goal of better understanding the prevalence of EIB in males and females, and because atopy has been reported to occur at higher rates in athletes, in this study, we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n = 7501). Collectively, these studies reported: (1) a 23% prevalence of EIB in athletes; (2) a higher prevalence of atopy in male vs. female athletes; (3) a higher prevalence of atopy in athletes with EIB; (4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.


2014 ◽  
Vol 35 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Bharti Manwani ◽  
Kathryn Bentivegna ◽  
Sharon E Benashski ◽  
Venugopal Reddy Venna ◽  
Yan Xu ◽  
...  

Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.


Author(s):  
Fernando Ayllon ◽  
Monica Favnebøe Solberg ◽  
François Besnier ◽  
Per Gunnar Fjelldal ◽  
Tom Johnny Hansen ◽  
...  

SummaryDespite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are the best studied family of fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of transposition, suggesting a recent and non-random sex chromosome turnover in this species. We hypothesized the existence of an autosomic pseudocopy of sdY that is transmitted in accordance with Mendelian inheritance. To test this we developed a qPCR methodology to detect the number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomic copies in addition to the Y-specific copy present in males. Copy number frequencies were consistent with Mendelian inheritance. Pseudocopy loci were mapped to different chromosomes evidencing non-random transitions of the sex determining gene in Atlantic salmon and the existence of functional constraints for chromosome turnover.


Sign in / Sign up

Export Citation Format

Share Document