Detection of cell death in human skin wounds of various ages by an in situ end labeling of nuclear DNA fragments

1997 ◽  
Vol 110 (5) ◽  
pp. 240-243 ◽  
Author(s):  
R. Hausmann ◽  
A. Nerlich ◽  
J. T�bel ◽  
P. Betz ◽  
I. Wiest
2020 ◽  
Vol 71 (16) ◽  
pp. 4812-4827 ◽  
Author(s):  
Mei Bai ◽  
Minjian Liang ◽  
Bin Huai ◽  
Han Gao ◽  
Panpan Tong ◽  
...  

Abstract The secretory cavity is a typical structure in Citrus fruit and is formed by schizolysigeny. Previous reports have indicated that programmed cell death (PCD) is involved in the degradation of secretory cavity cells in the fruit, and that the spatio-temporal location of calcium is closely related to nuclear DNA degradation in this process; however, the molecular mechanisms underlying this Ca2+ regulation remain largely unknown. Here, we identified CgCaN that encodes a Ca2+-dependent DNase in the fruit of Citrus grandis ‘Tomentosa’, the function of which was studied using calcium ion localization, DNase activity assays, in situ hybridization, and protein immunolocalization. The results suggested that the full-length cDNA of CgCaN contains an ORF of 1011 bp that encodes a protein 336 amino acids in length with a SNase-like functional domain. CgCaN digests dsDNA at neutral pH in a Ca2+-dependent manner. In situ hybridization signals of CgCaN were particularly distributed in the secretory cavity cells. Ca2+ and Ca2+-dependent DNases were mainly observed in the condensed chromatin and in the nucleolus. In addition, spatio-temporal expression patterns of CgCaN and its protein coincided with the time-points that corresponded to chromatin degradation and nuclear rupture during the PCD in the development of the fruit secretory cavity. Taken together, our results suggest that Ca2+-dependent DNases play direct roles in nuclear DNA degradation during the PCD of secretory cavity cells during Citrus fruit development. Given the consistency of the expression patterns of genes regulated by calmodulin (CaM) and calcium-dependent protein kinases (CDPK) and the dynamics of calcium accumulation, we speculate that CaM and CDPK proteins might be involved in Ca2+ transport from the extracellular walls through the cytoplasm and into the nucleus to activate CgCaN for DNA degradation.


1992 ◽  
Vol 119 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Y Gavrieli ◽  
Y Sherman ◽  
S A Ben-Sasson

Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy-transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.


1994 ◽  
Vol 72 (11-12) ◽  
pp. 573-579 ◽  
Author(s):  
Katharina D'herde ◽  
Guido De Pestel ◽  
Frank Roels

Apoptosis is studied in a model of induced follicular atresia in the ovary of Japanese quail (Coturnix coturnix japonica) by in situ end labeling of DNA fragments in granulosa cells using two different techniques (incorporation of labeled nucleotides by DNA polymerase I or terminal deoxynucleotidyl transferase). The most remarkable observation related to apoptosis in this model is the predominant cytoplasmic localization of labeled DNA fragments, while DNA fragmentation appears to be absent from compacted chromatin masses of apoptotic nuclei and apoptotic nuclear fragments. Unstained apoptotic bodies are present adjacent to stained ones, so that their detection rate on hematoxylin + eosin stained sections is better than on the in situ end-labeled sections. This suggests that DNA fragmentation is a late event or not obligatory in apoptotic granulosa cell death. In contrast to similar studies on atretic granulosa in mammalian models, the process of apoptosis is asynchronous in the granulosal epithelium, with a majority of nuclei with normal chromatin configuration remaining negative for DNA fragmentation. Finally it is shown that the techniques used are not specific for apoptosis, as DNA fragmentation in necrotic granulosa cells is detected as well.Key words: programmed cell death, apoptosis, in situ DNA end labeling, endonuclease, necrosis.


1995 ◽  
Vol 37 (6) ◽  
pp. 488-492 ◽  
Author(s):  
Yoshihiro Abiko ◽  
Hidetoshi Kanno ◽  
Jiro Arai ◽  
Michiko Nishimura ◽  
Masato Saitoh ◽  
...  

2002 ◽  
Vol 118 (1) ◽  
pp. 180-184 ◽  
Author(s):  
Chunyan Zhao ◽  
Kari Hemminki ◽  
Erna Snellman ◽  
Christer T. Jansen
Keyword(s):  

2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Hsiang Yu ◽  
Huey-Jen Lai ◽  
Tai-Wei Lin ◽  
Szecheng J. Lo

The method of ToLFP (topoisomerase labelled fluorescence probes) is useful for detecting the DNA fragments generated by DNase II in Caenorhabditis elegans embryos. It reveals ~70% ToLFP signals in dying cells and 30% in engulfing cells during embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document