Genetic association studies of tumour necrosis factor α and β and tumour necrosis factor receptor 1 and 2 polymorphisms across the clinical spectrum of multiple sclerosis

1999 ◽  
Vol 246 (11) ◽  
pp. 1051-1058 ◽  
Author(s):  
G. V. McDonnell ◽  
Claire W. Kirk ◽  
Derek Middleton ◽  
Aidan G. Droogan ◽  
Stanley A. Hawkins ◽  
...  
2020 ◽  
Vol 31 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Yicheng Jiang ◽  
Xue Li ◽  
Hai Xu ◽  
Yang Gu ◽  
Feiya Shi ◽  
...  

Abstract OBJECTIVES Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide. Post-AMI cardiac remodelling is closely related to the prognosis of AMI. The excess inflammatory responses could promote cardiac remodelling. Tumour necrosis factor receptor-associated factor-interacting protein with forkhead-associated domain (TIFA) has been identified as a nuclear factor (NF)-κB activator, which plays a key role in the activation of the NF-κB signalling pathway. The goal of this research was to investigate the expression and the underlying mechanism of TIFA in an AMI mouse model. METHODS The AMI mouse model was induced by ligation of the left coronary artery. TIFA and NF-κB knockdown were established by lentivirus transduction. The expression levels of associated proteins were analysed by a western blot or an enzyme-linked immunosorbent assay. Histological characteristics were evaluated by haematoxylin–eosin staining. RESULTS The TIFA level was elevated in our AMI mouse model. The production of interleukin-1β and tumour necrosis factor-α increased markedly in the mice with AMI. TIFA knockdown inhibited the infiltration of inflammatory cells, production of pro-inflammatory mediators (interleukin-1β and tumour necrosis factor-α), NF-κB activation and cardiac remodelling (matrix metallopeptidase 9) post-AMI. In addition, NF-κB knockdown could also alleviate cardiac remodelling after AMI. CONCLUSIONS The preceding results indicated that TIFA inhibition could ameliorate cardiac remodelling after AMI partly through inactivation of NF-κB. This study provides insights into further research of cardiac remodelling and AMI from bench to clinic.


2003 ◽  
Vol 70 ◽  
pp. 39-52 ◽  
Author(s):  
Roy A. Black ◽  
John R. Doedens ◽  
Rajeev Mahimkar ◽  
Richard Johnson ◽  
Lin Guo ◽  
...  

Tumour necrosis factor α (TNFα)-converting enzyme (TACE/ADAM-17, where ADAM stands for a disintegrin and metalloproteinase) releases from the cell surface the extracellular domains of TNF and several other proteins. Previous studies have found that, while purified TACE preferentially cleaves peptides representing the processing sites in TNF and transforming growth factor α, the cellular enzyme nonetheless also sheds proteins with divergent cleavage sites very efficiently. More recent work, identifying the cleavage site in the p75 TNF receptor, quantifying the susceptibility of additional peptides to cleavage by TACE and identifying additional protein substrates, underlines the complexity of TACE-substrate interactions. In addition to substrate specificity, the mechanism underlying the increased rate of shedding caused by agents that activate cells remains poorly understood. Recent work in this area, utilizing a peptide substrate as a probe for cellular TACE activity, indicates that the intrinsic activity of the enzyme is somehow increased.


Sign in / Sign up

Export Citation Format

Share Document