The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion

2017 ◽  
Vol 117 (12) ◽  
pp. 2579-2585 ◽  
Author(s):  
Carl D. Paton ◽  
Shalako M. Addis ◽  
Lee-Anne Taylor
2020 ◽  
Vol 318 (1) ◽  
pp. H90-H109 ◽  
Author(s):  
Michelle Cristina-Oliveira ◽  
Kamila Meireles ◽  
Marty D. Spranger ◽  
Donal S. O’Leary ◽  
Hamilton Roschel ◽  
...  

Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.


Author(s):  
Melissa Miller ◽  
Kacee Hill ◽  
Jaclyn Arduini ◽  
Aric Warren

Purpose: To determine if, in physically active individuals, low-intensity Blood Flow Restriction (BFR) training is more effective than training without BFR at improving measures of aerobic capacity. Methods: A database search was conducted for articles that matched inclusion criteria (minimum level 2 evidence, physically active participants, comparison of low-intensity BFR to no BFR training, comparison of pre-post testing with aerobic fitness or performance, training protocols >2 weeks, studies published after 2010) by two authors and assessed by one using the PEDro scale (a minimum of 5/10 was required) to ensure level 2 quality studies that were then analyzed. Results: Four studies met all inclusion criteria. Three of the studies found significant improvements in aerobic capacity (VO2max) using BFR compared to no BFR. While the fourth study reported significant improvements in time to exertion (TTE) training with BFR, this same study did not find significant improvements in measures of aerobic capacity with BFR training. All compared BFR to non-BFR training. It was noted that high-intensity training without BFR was superior to both low-intensity training with and without BFR with respect to improvements in aerobic capacity. Conclusions: Moderate evidence exists to support the use of low-intensity BFR training to improve measures of aerobic capacity in physically active individuals over not using BRF. Clinicians seeking to maintain aerobic capacity in their patients who are unable, for various reasons, to perform high levels of aerobic activity may find low-intensity BFR training useful as a substitution while still receiving improvements in measures of aerobic capacity.


2012 ◽  
Vol 52 (April) ◽  
pp. 217-222
Author(s):  
Shingo Takada ◽  
Koichi Okita ◽  
Tadashi Suga ◽  
Masahiro Horiuchi ◽  
Takayuki Sako ◽  
...  

2020 ◽  
Vol 8 (3) ◽  
pp. 232596712090682 ◽  
Author(s):  
Yining Lu ◽  
Bhavik H. Patel ◽  
Craig Kym ◽  
Benedict U. Nwachukwu ◽  
Alexander Beletksy ◽  
...  

Background: Low-load blood flow restriction (BFR) training has attracted attention as a potentially effective method of perioperative clinical rehabilitation for patients undergoing orthopaedic procedures. Purpose: To (1) compare the effectiveness of low-load BFR training in conjunction with a standard rehabilitation protocol, pre- and postoperatively, and non-BFR interventions in patients undergoing anterior cruciate ligament reconstruction (ACLR) and (2) evaluate protocols for implementing BFR perioperatively for patients undergoing ACLR. Study Design: Systematic review; Level of evidence, 2. Methods: A systematic review of the 3 medical literature databases was conducted to identify all level 1 and 2 clinical trials published since 1990 on BFR in patients undergoing ACLR. Patient demographics from included studies were pooled. Outcome data were documented, including muscle strength and size, and perceived pain and exertion. A descriptive analysis of outcomes from BFR and non-BFR interventions was performed. Results: A total of 6 studies (154 patients; 66.2% male; mean ± SD age, 24.2 ± 3.68 years) were included. Of these, 2 studies examined low-load BFR as a preoperative intervention, 1 of which observed a significant increase in muscle isometric endurance ( P = .014), surface electromyography of the vastus medialis ( P < .001), and muscle blood flow to the vastus lateralis at final follow-up ( P < .001) as compared with patients undergoing sham BFR. Four studies investigated low-load BFR as a postoperative intervention, and they observed significant benefits in muscle hypertrophy, as measured by cross-sectional area; strength, as measured by extensor torque; and subjective outcomes, as measured by subjective knee pain during session, over traditional low-load resistance training (all P < .05). BFR occlusion periods ranged from 3 to 5 minutes, with rest periods ranging from 45 seconds to 3 minutes. Conclusion: This systematic review found evidence on the topic of BFR rehabilitation after ACLR to be sparse and heterogeneous likely because of the relatively recent onset of its popularity. While a few authors have demonstrated the potential strength and hypertrophy benefits of perioperative BFR, future investigations with standardized outcomes, long-term follow-up, and more robust sample sizes are required to draw more definitive conclusions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Christina Willberg ◽  
Karen Zentgraf ◽  
Michael Behringer

Muscular fatigue can affect postural control processes by impacting on the neuromuscular and somatosensory system. It is assumed that this leads to an increased risk of injury, especially in sports such as alpine skiing that expose the body to strong and rapidly changing external forces. In this context, posture constraints and contraction-related muscular pressure may lead to muscular deoxygenation. This study investigates whether these constraints and pressure affect static and dynamic postural control. To simulate impaired blood flow in sports within a laboratory task, oxygen saturation was manipulated locally by using an inflatable cuff to induce blood flow restriction (BFR). Twenty-three subjects were asked to stand on a perturbatable platform used to assess postural-related movements. Using a 2 × 2 within-subject design, each participant performed postural control tasks both with and without BFR. BFR resulted in lower oxygenation of the m. quadriceps femoris (p = 0.024) and was associated with a significantly lower time to exhaustion (TTE) compared to the non-restricted condition [F(1,19) = 16.22, p &lt; 0.001, ηp2 = 0.46]. Perturbation resulted in a significantly increased TTE [F(1,19) = 7.28, p = 0.014, ηp2 = 0.277]. There were no significant effects on static and dynamic postural control within the saturation conditions. The present data indicate that BFR conditions leads to deoxygenation and a reduced TTE. Postural control and the ability to regain stability after perturbation were not affected within this investigation.


Sign in / Sign up

Export Citation Format

Share Document