Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT)

2017 ◽  
Vol 118 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Todd Anthony Astorino ◽  
Matthew M. Schubert
Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1096
Author(s):  
Spyridon Tsirigkakis ◽  
George Mastorakos ◽  
Yiannis Koutedakis ◽  
Vassilis Mougios ◽  
Alan M. Nevill ◽  
...  

The effects of two high-intensity interval training (HIIT) protocols on regional body composition and fat oxidation in men with obesity were compared using a parallel randomized design. Sixteen inactive males (age, 38.9 ± 7.3 years; body fat, 31.8 ± 3.9%; peak oxygen uptake, VO2peak, 30.9 ± 4.1 mL/kg/min; all mean ± SD) were randomly assigned to either HIIT10 (48 × 10 s bouts at 100% of peak power [Wpeak] with 15 s of recovery) or HIIT60 group (8 × 60 s bouts at 100% Wpeak with 90 s of recovery), and subsequently completed eight weeks of training, while maintaining the same diet. Analyses of variance (ANOVA) showed only a main effect of time (p < 0.01) and no group or interaction effects (p > 0.05) in the examined parameters. Total and trunk fat mass decreased by 1.81 kg (90%CI: −2.63 to −0.99 kg; p = 0.002) and 1.45 kg (90%CI: −1.95 to −0.94 kg; p < 0.001), respectively, while leg lean mass increased by 0.86 kg (90%CI: 0.63 to 1.08 kg; p < 0.001), following both HIIT protocols. HIIT increased peak fat oxidation (PFO) (from 0.20 ± 0.05 to 0.33 ± 0.08 g/min, p = 0.001), as well as fat oxidation over a wide range of submaximal exercise intensities, and shifted PFO to higher intensity (from 33.6 ± 4.6 to 37.6 ± 6.7% VO2peak, p = 0.039). HIIT, irrespective of protocol, improved VO2peak by 20.0 ± 7.2% (p < 0.001), while blood lactate at various submaximal intensities decreased by 20.6% (p = 0.001). In conclusion, both HIIT protocols were equally effective in improving regional body composition and fat oxidation during exercise in obese men.


Author(s):  
Todd A. Astorino ◽  
Jamie L. De Revere

This study compared changes in substrate metabolism with high intensity interval training (HIIT) in women of different ethnicities. Twelve Caucasian (C) and ten Hispanic women (H) (age = 24 ± 5 yr) who were inactive completed nine sessions of HIIT at 85 percent peak power output (%PPO). Pre-training, changes in fat oxidation (FOx) and carbohydrate oxidation (CHOOx) during progressive cycling were measured on two days to compute the minimum difference (MD). This test was repeated after the last training session. Between baseline tests, estimates of FOx and CHOOx were not different (p > 0.05) and were highly related (intraclass correlation coefficient equal to 0.72 to 0.88), although the coefficient of variation of maximal fat oxidation (MFO) was equal to 30%. Training significantly increased MFO (p = 0.03) in C (0.19 ± 0.06 g/min to 0.21 ± 0.06 g/min, d = 0.66) and H (0.16 ± 0.03 g/min to 0.19 ± 0.03 g/min, d = 1.3) that was similar (p = 0.92) between groups. There was a significant interaction for FOx (p = 0.003) as it was only increased in H versus C, although both groups exhibited reduced CHO oxidation (p = 0.002) with training. Use of MD revealed that only 3 of 22 women show meaningful increases in MFO (>0.08 g/min). The preliminary data reveals that a small dose of low-volume HIIT does not alter fat and CHO oxidation and there is little effect of ethnicity on the response to training.


2015 ◽  
Vol 119 (4) ◽  
pp. 352-362 ◽  
Author(s):  
Avigdor D. Arad ◽  
Fred J. DiMenna ◽  
Naketa Thomas ◽  
Jacqueline Tamis-Holland ◽  
Richard Weil ◽  
...  

The purpose of this randomized controlled clinical trial was to determine the effect of a 14-week high-intensity interval training (HIIT) intervention with weight stability on metabolic flexibility, insulin sensitivity, and cardiorespiratory fitness in sedentary, premenopausal, nondiabetic, overweight/obese African American women. Twenty-eight subjects were allocated to one of two groups: HIIT, which performed three sessions per week of four high-intensity cycling intervals, or a control group (CON), which maintained their normal level of physical activity. Diet was controlled for all subjects to ensure weight stability. Pre- and postintervention (pre/post), subjects completed an incremental cycling test to limit of tolerance and, following a 10-day high-fat controlled feeding period, a euglycemic-hyperinsulinemic clamp to determine insulin sensitivity and substrate oxidation. Nine members of HIIT (age, 29 ± 4 yr; body mass, 90.1 ± 13.8 kg) and eleven members of CON (age, 30 ± 7 yr; body mass, 85.5 ± 10.7 kg) completed the study. HIIT experienced an increased limit of tolerance (post, 1,124 ± 202 s; pre, 987 ± 146 s; P < 0.05), gas exchange threshold (post, 1.29 ± 0.34 liters/min; pre, 0.97 ± 0.23 liters/min; P < 0.05), and fat oxidation at the same absolute submaximal work rate compared with CON ( P < 0.05 for group-by-time interaction in all cases). However, changes in peak oxygen consumption (V̇o2peak), insulin sensitivity, free fatty acid suppression during insulin stimulation, and metabolic flexibility were not different in HIIT compared with CON. High-intensity interval training with weight stability increased exercise fat oxidation and tolerance in subjects at risk for diabetic progression, but did not improve insulin sensitivity or fat oxidation in the postabsorptive or insulin-stimulated state.


Sign in / Sign up

Export Citation Format

Share Document