Sensory feedback expands dynamic complexity and aids in robustness against noise

Author(s):  
Alexander J. White
1999 ◽  
Vol 13 (4) ◽  
pp. 234-244
Author(s):  
Uwe Niederberger ◽  
Wolf-Dieter Gerber

Abstract In two experiments with four and two groups of healthy subjects, a novel motor task, the voluntary abduction of the right big toe, was trained. This task cannot usually be performed without training and is therefore ideal for the study of elementary motor learning. A systematic variation of proprioceptive, tactile, visual, and EMG feedback was used. In addition to peripheral measurements such as the voluntary range of motion and EMG output during training, a three-channel EEG was recorded over Cz, C3, and C4. The movement-related brain potential during distinct periods of the training was analyzed as a central nervous parameter of the ongoing learning process. In experiment I, we randomized four groups of 12 subjects each (group P: proprioceptive feedback; group PT: proprioceptive and tactile feedback; group PTV: proprioceptive, tactile, and visual feedback; group PTEMG: proprioceptive, tactile, and EMG feedback). Best training results were reported from the PTEMG and PTV groups. The movement-preceding cortical activity, in the form of the amplitude of the readiness potential at the time of EMG onset, was greatest in these two groups. Results of experiment II revealed a similar effect, with a greater training success and a higher electrocortical activation under additional EMG feedback compared to proprioceptive feedback alone. Sensory EMG feedback as evaluated by peripheral and central nervous measurements appears to be useful in motor training and neuromuscular re-education.


1984 ◽  
Vol 14 (2) ◽  
pp. 135-144
Author(s):  
Margaret Rodman ◽  
William Rodman

Who or what killed Sara Mata? During the hundred days of mourning that followed the young woman's “unnatural” death, residents of Aoba, an island in Vanuatu, sought to discover the cause of Sara's death. Alternative local explanations of the death highlight the ambiguity that characterizes Aoban beliefs about people's ability to cause death by supernatural means. We show the conventional anthropological categories of poison, sorcery, and witchcraft may misrepresent the dynamic complexity of such indigenous beliefs. Finally, we discuss a process of change in Aoban ideas concerning unnatural death, a shift from a belief in sorcery to a belief in self-destruction by supernatural means. The possibility that a society can “rewrite” a transitive process of sorcery into a reflexive mode raises new questions about the theoretical relations between witchcraft, sorcery, and structural principles of society.


Author(s):  
Iain A. Anderson ◽  
Benjamin M. O’Brien

Mechanical devices that include home appliances, automobiles, and airplanes are typically driven by electric motors or combustion engines through gearboxes and other linkages. Airplane wings, for example, have hinged control surfaces such as ailerons. Now imagine a wing that has no hinged control surfaces or linkages but that instead bends or warps to assume an appropriate shape, like the wing of a bird. Such a device could be enabled using an electro-active polymer technology based on electronic artificial muscles. Artificial muscles act directly on a structure, like our leg muscles that are attached by tendon to our bones and that through phased contraction enable us to walk. Sensory feedback from our muscles enables proprioceptive control. So, for artificial muscles to be used appropriately we need to pay attention not only to mechanisms for muscle actuation but also to how we can incorporate self-sensing feedback for the control of position.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul VanGilder ◽  
Ying Shi ◽  
Gregory Apker ◽  
Christopher A. Buneo

AbstractAlthough multisensory integration is crucial for sensorimotor function, it is unclear how visual and proprioceptive sensory cues are combined in the brain during motor behaviors. Here we characterized the effects of multisensory interactions on local field potential (LFP) activity obtained from the superior parietal lobule (SPL) as non-human primates performed a reaching task with either unimodal (proprioceptive) or bimodal (visual-proprioceptive) sensory feedback. Based on previous analyses of spiking activity, we hypothesized that evoked LFP responses would be tuned to arm location but would be suppressed on bimodal trials, relative to unimodal trials. We also expected to see a substantial number of recording sites with enhanced beta band spectral power for only one set of feedback conditions (e.g. unimodal or bimodal), as was previously observed for spiking activity. We found that evoked activity and beta band power were tuned to arm location at many individual sites, though this tuning often differed between unimodal and bimodal trials. Across the population, both evoked and beta activity were consistent with feedback-dependent tuning to arm location, while beta band activity also showed evidence of response suppression on bimodal trials. The results suggest that multisensory interactions can alter the tuning and gain of arm position-related LFP activity in the SPL.


2020 ◽  
Vol 49 (2) ◽  
pp. 18-29
Author(s):  
Thomas Schwentick ◽  
Nils Vortmeier ◽  
Thomas Zeume
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric J. Earley ◽  
Reva E. Johnson ◽  
Jonathon W. Sensinger ◽  
Levi J. Hargrove

AbstractAccurate control of human limbs involves both feedforward and feedback signals. For prosthetic arms, feedforward control is commonly accomplished by recording myoelectric signals from the residual limb to predict the user’s intent, but augmented feedback signals are not explicitly provided in commercial devices. Previous studies have demonstrated inconsistent results when artificial feedback was provided in the presence of vision; some studies showed benefits, while others did not. We hypothesized that negligible benefits in past studies may have been due to artificial feedback with low precision compared to vision, which results in heavy reliance on vision during reaching tasks. Furthermore, we anticipated more reliable benefits from artificial feedback when providing information that vision estimates with high uncertainty (e.g. joint speed). In this study, we test an artificial sensory feedback system providing joint speed information and how it impacts performance and adaptation during a hybrid positional-and-myoelectric ballistic reaching task. We found that overall reaching errors were reduced after perturbed control, but did not significantly improve steady-state reaches. Furthermore, we found that feedback about the joint speed of the myoelectric prosthesis control improved the adaptation rate of biological limb movements, which may have resulted from high prosthesis control noise and strategic overreaching with the positional control and underreaching with the myoelectric control. These results provide insights into the relevant factors influencing the improvements conferred by artificial sensory feedback.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1173
Author(s):  
Mingxiao Liu ◽  
Samuel Wilder ◽  
Sean Sanford ◽  
Soha Saleh ◽  
Noam Y. Harel ◽  
...  

Sensory feedback from wearables can be effective to learn better movement through enhanced information and engagement. Facilitating greater user cognition during movement practice is critical to accelerate gains in motor function during rehabilitation following brain or spinal cord trauma. This preliminary study presents an approach using an instrumented glove to leverage sense of agency, or perception of control, to provide training feedback for functional grasp. Seventeen able-bodied subjects underwent training and testing with a custom-built sensor glove prototype from our laboratory. The glove utilizes onboard force and flex sensors to provide inputs to an artificial neural network that predicts achievement of “secure” grasp. Onboard visual and audio feedback was provided during training with progressively shorter time delay to induce greater agency by intentional binding, or perceived compression in time between an action (grasp) and sensory consequence (feedback). After training, subjects demonstrated a significant reduction (p < 0.05) in movement pathlength and completion time for a functional task involving grasp-move-place of a small object. Future work will include a model-based algorithm to compute secure grasp, virtual reality immersion, and testing with clinical populations.


Sign in / Sign up

Export Citation Format

Share Document