Muscles

Author(s):  
Iain A. Anderson ◽  
Benjamin M. O’Brien

Mechanical devices that include home appliances, automobiles, and airplanes are typically driven by electric motors or combustion engines through gearboxes and other linkages. Airplane wings, for example, have hinged control surfaces such as ailerons. Now imagine a wing that has no hinged control surfaces or linkages but that instead bends or warps to assume an appropriate shape, like the wing of a bird. Such a device could be enabled using an electro-active polymer technology based on electronic artificial muscles. Artificial muscles act directly on a structure, like our leg muscles that are attached by tendon to our bones and that through phased contraction enable us to walk. Sensory feedback from our muscles enables proprioceptive control. So, for artificial muscles to be used appropriately we need to pay attention not only to mechanisms for muscle actuation but also to how we can incorporate self-sensing feedback for the control of position.

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Pedro B. C. Leal ◽  
Marcela Cabral-Seanez ◽  
Vikram B. Baliga ◽  
Douglas L. Altshuler ◽  
Darren J. Hartl

Skeletal muscle provides a compact solution for performing multiple tasks under diverse operational conditions, a capability lacking in many current engineered systems. Here, we evaluate if shape memory alloy (SMA) components can serve as artificial muscles with tunable mechanical performance. We experimentally impose cyclic stimuli, electric and mechanical, to an SMA wire and demonstrate that this material can mimic the response of the avian humerotriceps, a skeletal muscle that acts in the dynamic control of wing shapes. We next numerically evaluate the feasibility of using SMA springs as artificial leg muscles for a bipedal walking robot. Altering the phase offset between mechanical and electrical stimuli was sufficient for both synthetic and natural muscle to shift between actuation, braking and spring-like behaviour.


1996 ◽  
Vol 76 (2) ◽  
pp. 788-798 ◽  
Author(s):  
M. Wildman ◽  
A. Cannone

1. An interaction exists between two proprioceptive afferent neurons innervating the thoracic-coxal muscle receptor organ (TCMRO) of the crab, Carcinus maenas. Intracellular recordings were made from the extraganglionic regions of the afferents in order to characterize this interaction and its effects on sensory feedback. 2. A current-induced depolarization of the nonspiking T fiber of the TCMRO results in a depolarization of the P fiber, a small-diameter (7 microns) neuron innervating the same receptor. This interaction is graded in amplitude, and may result in a single action potential being superimposed on the graded response of the P fiber. A hyperpolarization of the T fiber has a smaller effect on the P fiber than a depolarization of similar amplitude. The interaction is rectified in a T- to P-fiber direction, and has a minimum central delay of approximately 3.6 ms. 3. The site of the interaction between the afferents is situated centrally, within the thoracic ganglion. Action potentials evoked in the P fiber by a T-fiber depolarization propagate actively and antidromically to the periphery. 4. Central modulation of the interaction occurs, because the amplitude of a T-fiber-induced depolarization is reduced in the P fiber during centrally generated spontaneous bursts of activity in the motoneurons of basal leg muscles. 5. Because of the interaction between T and P fibers, action potentials recorded from the peripheral portion of the P fiber during receptor stretch may be either orthodromic, resulting directly from the effects of the stretch on the sensory endings of the P fiber, or antidromic, resulting from the central input from the T fiber. 6. The T- to P-fiber interaction may serve to extend the dynamic sensitivity range of the P fiber, in particular by amplifying its sensory response at short receptor lengths and low velocities of stretch.


1929 ◽  
Vol 33 (228) ◽  
pp. 1139-1166

During the past quarter of a century great strides have been made in perfecting the science of aviation. Too much credit cannot be given to the men who have laboured untiringly in the laboratories in an endeavour to determine with mathematical certainty the physical laws that govern the mechanical devices which mankind is using in his conquest of the air.Science has done more for civil aviation, however, than unravel the mysteries of aerodynamics and internal combustion engines. It has provided many important aids to air navigation, such as improved lighting facilities for airways and airports, wireless as a means of communication between ground and aeroplane, and also as a beacon to guide the pilot on his course, and numerous instruments which now adorn the cockpit of every aeroplane.While at times the development of air transport may suffer because of lack of co–ordination between the laboratory and the factory, it will suffer far more should a similar condition exist between the scientists and those charged with the duty of regulating and promoting civil aviation.


1973 ◽  
Vol 187 (1) ◽  
pp. 348-353
Author(s):  
M. J. Rose

The response of vehicles to the transient forces associated with gusting of the natural wind is assuming greater prominence. Total reliance upon natural gusts is unsatisfactory since these are unpredictable and unrepeatable. Major Continental manufacturers have for several years utilized gusts produced by multiple-fan installations, the power source being either electric motors or internal-combustion engines. The M.I.R.A. equipment is centred on a single Rolls-Royce Avon gas-turbine engine, the exhaust gases from which are directed across a roadway. Measurements have indicated that the gust profiles are similar to those encountered on motorways in respect of rise-time.


2013 ◽  
Vol 155 (4) ◽  
pp. 3-15
Author(s):  
Hans LENZ

For many decades to come, and in the foreseeable future, internal combustion engines – in many cases with electric motors – will be with us, just like the liquid fuels they require. The importance of crude oil will decline, as these fuels will be increasingly produced on a synthetic basis without CO2 emissions. The answers to the question ”Future Mobility without Internal Combustion Engines and Fuels?“ are “no” in both cases. Purely battery-electric mobility will be applied in the future only in specific areas. Fuel-cell vehicles will hardly be used because of the extreme infrastructure investment costs. In contrast, liquid fuels will ensure the future of mobility. In this scenario, energy such as solar or wind energy will be generated without CO2 emissions.


2019 ◽  
Vol 17 (Suppl.1) ◽  
pp. 860-863
Author(s):  
Boyan Doytchev

Automotive and motorcycle sports are motor sports in which various vehicles (serial and modified cars, motorcycles, buggies, jeeps, trucks, prototypes, etc.) compete with engines of different types (electric motors, hybrid and mostly thermal internal combustion engines - piston and partly rotary). Interest in the discuss sport are progressively increases in the years from people of different age groups. The article comments on environmental issues related to these sports and environmental recommendations for their application. The combined efforts of various institutions are needed to increase the popularity and awareness of sport that can be realized under optimal environmental conditions and does not impair its environmental sustainability. This requires an actual environmental policy and education aimed at future development in this direction.


2020 ◽  
Vol 92 (8) ◽  
pp. 1257-1261
Author(s):  
Mustafa Soylak ◽  
Mustafa Bakır

Purpose The usage of pneumatic artificial muscles (PAMs) is becoming increasingly widespread across a variety of industries because of its advantages such as its lightness and its ability to generate a huge amount of force using the fewest components. The purpose of this paper is to develop a piece of hardware to minimize and equally distribute the thermal changes on the surface of a PAM when positioning using PAMs. A classic PAM and a PAM that contains the hardware suggested for tasks, such as the positioning of spoilers decelerating control surfaces for aircrafts, were compared experimentally. Design/methodology/approach Rapid thermal changes were detected in the classic PAM, especially at the tip of the PAM. These thermal changes decrease the positioning sensitivity and reliability, thus shortening life span of the PAMs. A component was developed that could create a circulation of air around the tip of the PAM, preventing the temperature increase caused by still air. It is installed inside the PAM and makes it possible to control the pressurized air volume in crucial areas. Shaped as a perforated metal pipe, the component was embedded inside the PAM and effects of this component were investigated. Findings The experiment results have shown that, thanks to the system that was developed, cool air that comes from outside is able to reach the tip of the PAM every time, thus keeping regional temperature increase to a minimum. The temperature increase in the pressurized air inlet was minimized by creating a circulation of air in the area. Originality/value With this study, the distribution of heat in different areas on PAM was homogenized at a low cost using the component that was developed.


Author(s):  
Liviu POPESCU

During the last ten years the electric vehicles became more and more part of the daily mobility. Supported by different policies, but also by the technology advance, the electromobility is far to be an achieved topic and enters a new decade. The hybrid solutions continue to offer an alternative using the combustion engines. Latest researches and developments on fuel cells push to an alternative future, based on hydrogen. The electric batteries, as energy storage on vehicle, remain the most important way to conduct EV to the roads, with regular improvements. In fact, all these technologies are developing solutions to provide and control the energy for an electric motor. The classic solution using one engine and a kinematic chain to distribute the mechanical power to the wheels is completed by the possibility to integrate not only one, but more electric motors in the same vehicle.


2021 ◽  
Vol 71 (6) ◽  
pp. 836-845
Author(s):  
Mehmet Kum ◽  
Haluk Gozde ◽  
Semih Ozden

On the battlefield of today, it has become an important requirement to hit moving or fixed targets by using tank or artillery ammunition with high precision. However, while there are many articles on guiding tactical missiles, it cannot found sufficient scientific study for guiding tank ammunition in the related literature. In this study, the laser BR-guidance method is offered to the classic tank ammunition with a diameter of 155 mm in order to give the tank a precision strike capacity, as different from the literature. First of all, an ammunition model is created with coefficients of the mass, inertia, and surface area and friction. In addition, an autopilot dynamic is modeled for the pitch and roll axes of the ammunition. Also, the atmosphere model and environmental factors are added to the model. In order to control this nonlinear model, a lead-compensator and a PD-controller are designed. In order for the results to be transferred to a real application, the accelerations obtained must basically be produced by the electric motors that will drive the control surfaces to be designed. At the end of the study, it is seen that both controllers can produce lateral accelerations within limits without reaching high saturation.


Sign in / Sign up

Export Citation Format

Share Document