Alterations in single muscle fiber calcium sensitivity with resistance training in older women

2002 ◽  
Vol 444 (3) ◽  
pp. 419-425 ◽  
Author(s):  
M. Godard ◽  
P. Gallagher ◽  
U. Raue ◽  
S. Trappe

2005 ◽  
Vol 26 (5) ◽  
pp. 339-343 ◽  
Author(s):  
U. Raue ◽  
B. Terpstra ◽  
D. L. Williamson ◽  
P. M. Gallagher ◽  
S. W. Trappe


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S276
Author(s):  
Dustin Slivka ◽  
Ulrika Raue ◽  
Kiril Minchev ◽  
Scott Trappe


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ulrika Raue ◽  
Travis Conley ◽  
Emily Louis ◽  
Kiril Minchev ◽  
Bozena Jemiolo ◽  
...  


2001 ◽  
Vol 91 (5) ◽  
pp. 1955-1961 ◽  
Author(s):  
D. L. Williamson ◽  
P. M. Gallagher ◽  
C. C. Carroll ◽  
U. Raue ◽  
S. W. Trappe

The purpose of this investigation was to examine the effects of 12 wk of progressive resistance training (PRT) on single muscle fiber myosin heavy chain (MHC; I, I/IIa, I/IIa/IIx, IIa, IIa/IIx, IIx) isoform proportions in young individuals. Young, untrained men (YM; n = 6) and women (YW; n = 6) (age = 22 ± 1 and 25 ± 2 yr for YW and YM, respectively) received pre- and post-PRT muscle biopsies from the right vastus lateralis for single muscle fiber MHC distribution by electrophoretic analysis (192 ± 5 pre- and 183 ± 6 post-fibers/subject analyzed; 4,495 fibers total). Data are presented as percentages of the total fibers analyzed per subject. The PRT protocol elicited an increase in the pure MHC IIa (Δ = + 24 and + 27; YW and YM, respectively; P < 0.05) with no change in the pure MHC I distribution. The hybrid MHC distributions decreased I/IIa/IIx (Δ = −2; YM and YW; P < 0.05), IIa/IIx (Δ = −13 and −19 for YM and YW, respectively; P < 0.05), and total hybrid fiber proportion (I/IIa + I/IIa/IIx + IIa/IIx) decreased (Δ = −19 and −30 for YM and YW, respectively; P < 0.05) with the training, as did the MHC IIx distribution (Δ = −2; YW only; P < 0.05). Alterations in the predominance of MHC isoforms within hybrid fibers (decrease in MHC I-dominant I/IIa and nondominant MHC IIa/IIx, increase in MHC IIa-dominant IIa/IIx; P < 0.05) appeared to contribute to the increase in the MHC IIa proportion. Electrophoresis of muscle cross sections revealed an ∼7% increase ( P< 0.05) in MHC IIa proportion in both groups, whereas the MHC IIx decrease by 7.5 and 11.6% post-PRT in YW and YM, respectively. MHC I proportions increase in YM by 4.8% ( P < 0.05) post-PRT. These findings further support previous resistance training data in young adults with respect to the increase in the MHC IIa proportions but demonstrate that a majority of the change can be attributed to the decrease in single-fiber hybrid proportions.



2002 ◽  
Vol 34 (5) ◽  
pp. S121
Author(s):  
U Raue ◽  
B Terpstra ◽  
D L. Williamson ◽  
P M. Gallagher ◽  
S W. Trappe


2018 ◽  
Vol 74 (3) ◽  
pp. 412-419 ◽  
Author(s):  
Zhong-Min Wang ◽  
Xiaoyan Leng ◽  
María Laura Messi ◽  
Seung J Choi ◽  
Anthony P Marsh ◽  
...  


2001 ◽  
Vol 281 (2) ◽  
pp. C398-C406 ◽  
Author(s):  
Scott Trappe ◽  
Michael Godard ◽  
Philip Gallagher ◽  
Chad Carroll ◽  
Greg Rowden ◽  
...  

The purpose of this study was to 1) examine single cell contractile mechanics of skeletal muscle before and after 12 wk of progressive resistance training (PRT) in older women ( n = 7; 74 ± 2 yr) and 2) to compare these results to our previously completed single cell PRT work with older men ( n = 7; 74 ± 2 yr) (Trappe S, Williamson D, Godard M, Porter D, Rowden G, and Costill D. J Applied Physiol 89:143–152, 2000). Knee extensor PRT was performed 3 days/wk at 80% of one-repetition maximum. Muscle biopsies were obtained from the vastus lateralis before and after the PRT. Chemically skinned single muscle fibers ( n = 313) were studied at 15°C for peak tension (Po), unloaded shortening velocity ( V o), and power. Due to the low number of hybrid fibers identified post-PRT, direct comparisons were limited to MHC I and IIa fibers. Muscle fiber diameter increased 24% (90 ± 2 to 112 ± 6 μm; P < 0.05) in MHC I fibers with no change in MHC IIa fibers. Po increased ( P< 0.05) 33% in MHC I (0.76 ± 0.04 to 1.01 ± 0.09 mN) and 14% in MHC IIa (0.73 ± 0.04 to 0.83 ± 0.05 mN) fibers. Muscle fiber V o was unaltered in both fiber types with PRT. MHC I and IIa fiber power increased ( P< 0.05) 50% [11 ± 2 to 17 ± 2 μN · fiber length (FL) · s−1] and 25% (40 ± 8 to 51 ± 6 μN · FL · s−1), respectively. However, when peak power was normalized to cell size, no pre- to postimprovements were observed. These data indicate that PRT in elderly women increases muscle cell size, strength, and peak power in both slow and fast muscle fibers, which was similar to the older men. However, in contrast to the older men, no change in fiber V o or normalized power was observed in the older women. These data suggest that older men and women respond differently at the muscle cell level to the same resistance-training stimulus.



2018 ◽  
Vol 102 ◽  
pp. 84-92 ◽  
Author(s):  
Chad R. Straight ◽  
Philip A. Ades ◽  
Michael J. Toth ◽  
Mark S. Miller


2008 ◽  
Vol 295 (1) ◽  
pp. R273-R280 ◽  
Author(s):  
Dustin Slivka ◽  
Ulrika Raue ◽  
Chris Hollon ◽  
Kiril Minchev ◽  
Scott Trappe

The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 ± 1 yr; range 80–86 yr, 74 ± 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at ∼70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers ( n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers ( n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased ( P < 0.05) 23 ± 4 kg (56 ± 4 to 79 ± 7 kg; 41%). Muscle CSA increased ( P < 0.05) 3 ± 1 cm2 (120 ± 7 to 123 ± 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young (∼20 yr) and old (∼70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.



Sign in / Sign up

Export Citation Format

Share Document