Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension

2011 ◽  
Vol 462 (3) ◽  
pp. 469-477 ◽  
Author(s):  
I. Stuart Wood ◽  
Tanya Stezhka ◽  
Paul Trayhurn
Diabetologia ◽  
2013 ◽  
Vol 56 (9) ◽  
pp. 2044-2054 ◽  
Author(s):  
A. M. L. Pettersson ◽  
B. M. Stenson ◽  
S. Lorente-Cebrián ◽  
D. P. Andersson ◽  
N. Mejhert ◽  
...  

1996 ◽  
Vol 270 (3) ◽  
pp. H817-H826 ◽  
Author(s):  
H. Bolukoglu ◽  
G. W. Goodwin ◽  
P. H. Guthrie ◽  
S. G. Carmical ◽  
T. M. Chen ◽  
...  

The acute adaptation of myocardial glucose metabolism in response to low-flow ischemia and reperfusion was investigated in isolated working rat hearts perfused with bicarbonate saline containing glucose (10 mM) and insulin (40 microU/ml). Reversible low-flow ischemia was induced by reducing coronary perfusion pressure from 100 to 35 cmH2O. Tritiated glucose was used to assess rates of glucose transport and phosphorylation, flux from glucose to pyruvate, and oxidation of exogenous glucose. Rates of glycogen synthesis and glycolysis were also assessed. With ischemia, cardiac power decreased by more than two-thirds. Rates of glucose uptake and flux from glucose to pyruvate remained unchanged, while glucose oxidation declined by 61%. Rates of lactate release more than doubled, and fractional enrichment of glycogen remained the same. During reperfusion, glucose oxidation returned to the preischemic values. When isoproterenol was added during ischemia, glucose uptake increased, glycogen decreased, and lactate release increased. No effect was seen with pacing. We conclude that during low-flow ischemia and with glucose as the only exogenous substrate, net glucose uptake remains unchanged. There is a reversible redirection between glycolysis and glucose oxidation, while glycogen synthesis continues during ischemia and is enhanced with reperfusion.


2006 ◽  
Vol 18 (2) ◽  
pp. 278
Author(s):  
K. A. Preis ◽  
G. E. Seidel Jr ◽  
D. K. Gardner

In vitro maturation of immature oocytes results in limited success in both clinical and research laboratories. Although reduced oxygen concentration is beneficial to embryo development, the optimal concentration for oocyte maturation has yet to be determined. The objective of this study was to determine whether oxygen tension (20% or 5% O2) affects oocyte physiology. Additionally, the effect of epidermal growth factor (EGF) in maturation medium on oocyte metabolic activity and subsequent embryo development was determined. Cumulus–oocyte complexes (COCs; n = 231) were collected from 28-day-old unprimed F1 (C57BL/6 × CBA/ca) mice. COCs were individually matured in defined medium at 37°C in 6% CO2 in one of four groups (Table 1). For the metabolism study, COCs were further divided into two groups: individual maturation in a 2-µL drop of medium for 16 h (n = 131); or individual maturation in 5-μL for 12 h and then placed in a 0.5-μL drop of medium for 4 h (n = 100), the time of greatest metabolic activity of the COC. At 17 h of maturation, COCs were individually fertilized, and zygotes were individually cultured until 96 h, at which time blastocyst development was assessed. Metabolic profiles were analyzed by ANOVA, and blastocyst rates were analyzed by Fisher's exact test. Maturation rates and blastocyst development were not different between groups. However, at 12–16 h of maturation, metabolism of COCs was affected by both oxygen tension and EGF (Table 1). Concerning metabolism over the entire course of maturation, glucose uptake and lactate production were higher in COCs in 5% O2 + 100 ng EGF (P < 0.05) than in the remaining three groups. There was no difference between 5% O2 and 20% O2 + 100 ng EGF, but 20% O2 caused less glucose uptake and lactate production than did the other three treatment groups (P < 0.05). Results of this study are the first to show that oxygen tension alters COC metabolism: COCs matured under 5% O2 were more active metabolically than COCs matured under 20% O2. The effect of oxygen tension is to some extent moderated by the presence of EGF, as metabolic activity of COCs matured under 20% O2 + 100 ng EGF was closer to that of COCs matured under 5% O2 conditions. Although blastocyst rates were similar across the four groups, embryos derived from oocytes matured in different oxygen tensions may exhibit different developmental potential. In conclusion, results of this study have implications for the improvement of maturation conditions in both clinical and research laboratories. Table 1. Carbohydrate metabolism of individual COCs at 12–16 h of maturation


2001 ◽  
Vol 281 (6) ◽  
pp. H2463-H2472 ◽  
Author(s):  
Kenneth A. Schenkman

Critical intracellular myocardial oxygen tension was determined by optical spectroscopic measurement of myoglobin oxygen saturation in crystalloid-perfused guinea pig hearts. Accurate end-point determinations of the maximally oxygenated and deoxygenated myoglobin were made. Hearts were subjected to a steady decrease in perfusate oxygen tension while left ventricular developed pressure, maximal left ventricular dP/d t, myocardial oxygen consumption, lactate release, and adenosine release were measured as indices of myocardial function. Intracellular myoglobin was found to be only 72% saturated under baseline conditions with an arterial oxygen tension of >600 mmHg at 37°C. Baseline intracellular oxygen tension was 6.3 mmHg. Myocardial oxygen consumption was decreased by 10% when the oxygen tension fell to 5.7 mmHg, and cardiac contraction decreased 10% when oxygen tension was 4.1 mmHg. Adenosine release and, finally, lactate release began to increase at sequentially lower oxygen tensions. The present results indicate that the buffer-perfused guinea pig heart at 37°C has an intracellular oxygen tension just above the threshold for impaired function.


Diabetologia ◽  
2017 ◽  
Vol 61 (2) ◽  
pp. 504-505
Author(s):  
Rebecca K. C. Loh ◽  
Melissa F. Formosa ◽  
Nina Eikelis ◽  
David A. Bertovic ◽  
Mitchell J. Anderson ◽  
...  

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
R Zapata-Bustos ◽  
AJ Alonso-Castro ◽  
J Romo-Yañez ◽  
LA Salazar-Olivo

1999 ◽  
Vol 276 (3) ◽  
pp. E543-E552 ◽  
Author(s):  
Pietro Galassetti ◽  
Katherine S. Hamilton ◽  
Fiona K. Gibbons ◽  
Deanna P. Bracy ◽  
Drury B. Lacy ◽  
...  

The effects of prior fast duration (18 h, n = 8; 42 h, n = 8) on the glycemic and tissue-specific responses to an intraduodenal glucose load were studied in chronically catheterized conscious dogs. [3-3H]glucose was infused throughout the study. After basal measurements, glucose spiked with [U-14C]glucose was infused for 150 min intraduodenally. Arterial insulin and glucagon were similar in the two groups. Arterial glucose (mg/dl) rose ∼70% more during glucose infusion after 42 h than after an 18-h fast. The net hepatic glucose balance (mg ⋅ kg−1⋅ min−1) was similar in the two groups (basal: 1.8 ± 0.2 and 2.0 ± 0.3; glucose infusion: −2.2 ± 0.5 and −2.2 ± 0.7). The intrahepatic fate of glucose was 79% glycogen, 13% oxidized, and 8% lactate release after a 42-h fast; it was 23% glycogen, 21% oxidized, and 56% lactate release after an 18-h fast. Net hindlimb glucose uptake was similar between groups. The appearance of intraduodenal glucose during glucose infusion (mg/kg) was 900 ± 50 and 1,120 ± 40 after 18- and 42-h fasts ( P < 0.01). Conclusion: glucose administration after prolonged fasting induces higher circulating glucose than a shorter fast (increased appearance of intraduodenal glucose); liver and hindlimb glucose uptakes and the hormonal response, however, are unchanged; finally, an intrahepatic redistribution of carbons favors glycogen deposition.


Sign in / Sign up

Export Citation Format

Share Document