341 OXYGEN TENSION AND EGF AFFECT METABOLISM OF IN VITRO-MATURED CUMULUS-ENCLOSED MOUSE OOCYTES

2006 ◽  
Vol 18 (2) ◽  
pp. 278
Author(s):  
K. A. Preis ◽  
G. E. Seidel Jr ◽  
D. K. Gardner

In vitro maturation of immature oocytes results in limited success in both clinical and research laboratories. Although reduced oxygen concentration is beneficial to embryo development, the optimal concentration for oocyte maturation has yet to be determined. The objective of this study was to determine whether oxygen tension (20% or 5% O2) affects oocyte physiology. Additionally, the effect of epidermal growth factor (EGF) in maturation medium on oocyte metabolic activity and subsequent embryo development was determined. Cumulus–oocyte complexes (COCs; n = 231) were collected from 28-day-old unprimed F1 (C57BL/6 × CBA/ca) mice. COCs were individually matured in defined medium at 37°C in 6% CO2 in one of four groups (Table 1). For the metabolism study, COCs were further divided into two groups: individual maturation in a 2-µL drop of medium for 16 h (n = 131); or individual maturation in 5-μL for 12 h and then placed in a 0.5-μL drop of medium for 4 h (n = 100), the time of greatest metabolic activity of the COC. At 17 h of maturation, COCs were individually fertilized, and zygotes were individually cultured until 96 h, at which time blastocyst development was assessed. Metabolic profiles were analyzed by ANOVA, and blastocyst rates were analyzed by Fisher's exact test. Maturation rates and blastocyst development were not different between groups. However, at 12–16 h of maturation, metabolism of COCs was affected by both oxygen tension and EGF (Table 1). Concerning metabolism over the entire course of maturation, glucose uptake and lactate production were higher in COCs in 5% O2 + 100 ng EGF (P < 0.05) than in the remaining three groups. There was no difference between 5% O2 and 20% O2 + 100 ng EGF, but 20% O2 caused less glucose uptake and lactate production than did the other three treatment groups (P < 0.05). Results of this study are the first to show that oxygen tension alters COC metabolism: COCs matured under 5% O2 were more active metabolically than COCs matured under 20% O2. The effect of oxygen tension is to some extent moderated by the presence of EGF, as metabolic activity of COCs matured under 20% O2 + 100 ng EGF was closer to that of COCs matured under 5% O2 conditions. Although blastocyst rates were similar across the four groups, embryos derived from oocytes matured in different oxygen tensions may exhibit different developmental potential. In conclusion, results of this study have implications for the improvement of maturation conditions in both clinical and research laboratories. Table 1. Carbohydrate metabolism of individual COCs at 12–16 h of maturation

2004 ◽  
Vol 16 (2) ◽  
pp. 283
Author(s):  
M.L. Sutton-McDowall ◽  
R.B. Gilchrist ◽  
J.G. Thompson

Glucose is the primary energy substrate consumed by bovine COCs during in vitro maturation (IVM), with most accounted for by glycolysis (L-lactate production). However, antral follicular fluid (FF) contains less than half the glucose of standard IVM media (TCM199=5.6mM, FF=2.3mM). We have previously demonstrated that from 20 to 24h of IVM, a significant proportion of the glucose utilized is directed into pathways other than lactate production (Sutton et al., 2003 Reproduction 126, 27–34). We hypothesize that glucose is utilized for cumulus matrix synthesis. The aim of this study was to determine the influence of glucosamine (an intermediate for matrix components) on FSH-stimulated glucose uptake and cumulus expansion. The influence of different glucose concentrations and glucosamine on nuclear maturation was also investigated. Bovine COCs were collected from abattoir-derived ovaries. In Exp. 1, individual COCs (n=60, 3 replicates) were cultured in 10-μL drops of TCM199 (plus pyruvate, hCG and BSA, containing 5.6mM glucose), ±FSH (0.1IUmL−1) and ±glucosamine (5mM). After 20h, COCs were transferred to fresh media and cultured a further 4h. Cumulus expansion and glucose/L-lactate levels in spent medium from 0–4-h and 20–24-h culture periods were measured. In Experiment 2, COCs (n=300, 6 replicates) were cultured in groups of 10 in 100μL of Bovine FF medium (a defined medium based on the composition of bovine antral FF, also containing amino acids, FSH, hCG and BSA) ±glucosamine (5mM) in 2.3 or 5.6mM glucose, or in conventional TCM199 IVM media (as above). Nuclear maturation was assessed at 24 and 30h using orcein staining. Treatment differences were determined using two-way ANOVA. The influence of FSH and glucosamine (Exp. 1) on the measured parameters was evident at 20–24h, with FSH increasing diameter, glucose uptake and L-lactate production (P&lt;0.05). Although glucosamine alone did not influence diameter or glucose/L-lactate concentrations, glucosamine plus FSH led to a decrease in glucose uptake compared to FSH-stimulation alone (P&lt;0.05). The proportion of oocytes at MII (Exp. 2) was significantly lower when COCs were cultured in low glucose (main effect, 24h: 2.3mM=38% v. 5.6mM=64%; P&lt;0.005). The presence of glucosamine tended to stimulate meiotic maturation (main effect, 24h: 0mM=45% v. 5mM=59%; P=0.1). MII frequency in TCM199 controls at 24h was 68%. These experiments support the hypothesis that synthesis of cumulus matrix is a major pathway for glucose metabolism, especially in the absence of glucosamine. Furthermore, oocytes matured in media based on a physiological concentration of glucose (2.3mM), have delayed meiosis compared to oocytes cultured in higher glucose (5.6mM). Thus, glucose has multiple functions, involving matrix formation and meiosis regulation during bovine IVM. Supplementation of medium with glucosamine appears to partly reduce the dependency of COCs on glucose. Supported by Australian Research Council and COOK Australia.


2020 ◽  
Vol 21 (19) ◽  
pp. 7067
Author(s):  
Meritxell Vendrell-Flotats ◽  
Tania García-Martínez ◽  
Iris Martínez-Rodero ◽  
Manel Lopez-Bejar ◽  
Jonathan LaMarre ◽  
...  

Oocyte cryopreservation has a significant impact on subsequent embryonic development. Herein, we investigated whether supplementing in vitro maturation medium with Leukemia Inhibitory Factor (LIF) prior to vitrification affects embryo development and gene expression at different embryo developmental stages. A panel of genes including maternal effect, epigenetics, apoptosis and heat stress was relatively quantified. The results show reduced cleavage rates after vitrification, regardless of the LIF treatment. Although not statistically different from control-vitrified oocytes, oocyte apoptosis and the blastocyst yield of LIF-vitrified oocytes were similar to their non-vitrified counterparts. Vitrification increased oocyte ZAR1, NPM2 and DPPA3 gene expression while its expression decreased in LIF-vitrified oocytes to similar or close levels to those of non-vitrified oocytes. With a few gene-specific exceptions, vitrification significantly increased the expression of DNMT3A, HDAC1, KAT2A, BAX and BCL2L1 in oocytes and most stages of embryo development, while comparable expression patterns for these genes were observed between LIF-vitrified and non-vitrified groups. Vitrification increased HSPA1A expression in oocytes and HSP90AA1 in 2-cell embryos. Our data suggest that vitrification triggers stage-specific changes in gene expression throughout embryonic development. However, the inclusion of LIF in the IVM medium prior to vitrification stimulates blastocyst development and several other developmental parameters and induces oocytes and embryos to demonstrate gene expression patterns similar to those derived from non-vitrified oocytes.


2014 ◽  
Vol 26 (3) ◽  
pp. 375 ◽  
Author(s):  
Ye Yuan ◽  
Melissa Paczkowski ◽  
Matthew B. Wheeler ◽  
Rebecca L. Krisher

The objective of this study was to evaluate the efficacy of a novel polydimethylsiloxane (PDMS) well-insert system for oocyte in vitro maturation (IVM) and in vitro embryo culture (IVC) in pigs. The PDMS well inserts, consisting of multiple microwells with connecting microchannels, resulted in equivalent blastocyst development compared with standard microdrop culture for IVC. These PDMS well inserts were then evaluated for IVM or IVC in a rocking versus static environment. The rocking environment during both oocyte IVM and embryo culture had detrimental effects on oocyte and embryo development compared with a static environment. Importantly, blastocyst development of oocytes and embryos cultured in the PDMS well inserts in the static environment was equivalent to that of standard microdrops. Further analysis of transcript abundance in blastocysts produced from these different environments revealed that the PDMS well-insert system may produce more viable embryos. In conclusion, this PDMS well-insert system can successfully mature oocytes and culture embryos in an individually-identifiable manner without compromising, and perhaps enhancing, developmental potential.


Zygote ◽  
2009 ◽  
Vol 17 (4) ◽  
pp. 321-328 ◽  
Author(s):  
G.Z. Mingoti ◽  
V.S.D. Caiado Castro ◽  
S.C. Méo ◽  
L.S.S. Barretto ◽  
J.M. Garcia

SummaryAiming to improve in vitro production of bovine embryos and to obtain supplements to replace serum for in vitro maturation (IVM), this study evaluated the effects of macromolecular supplementation of IMV medium (bovine serum albumin – BSA, polyvinyl alcohol – PVA, polyvinyl pyrrolidone – PVP, Ficoll, KnockoutSR, or fetal calf serum – FCS) and oxygen tension [5% CO2 in air (20% O2) or 5% CO2, 5% O2 and 90% N2 (5% O2)] on oocyte maturation and embryo development. Nuclear progression to germinal vesicle breakdown, metaphase I and metaphase II stages were evaluated and overall results revealed that undefined (FCS) and semi-defined (BSA) media gave better results at 20% O2 and defined media (PVA, PVP and Ficoll) at 5% O2. Independent of macromolecule supplement, IVM at 20% O2 was considered optimal for nuclear maturation. To evaluate embryo development, oocytes matured in the previously described conditions were fertilized and cultured at the same oxygen tension used for IVM and assessed for cleavage (43.0 to 74.8%) and development to morulae (16.4 to 33.8%), blastocyst (7.7 to 52.9%) and hatched blastocyst (9.6 to 48.1%). Apart from oxygen tension, all treatments, except Knockout (22.7%), gave similar results for blastocyst development (26.5 to 38.7%). Independently of macromolecule supplement, higher development rates were obtained in an oxygen tension of 20% O2 (67.4% cleavage, 29.2% morulae, 40.8% blastocyst and 34.0% hatched blastocyst) when compared with 5% O2 (52.5, 21.8, 18.2 and 15.6%, respectively). This study indicates that BSA, PVA, PVP and Ficoll can replace serum during IVM and that the optimal atmospheric condition for in vitro production of bovine embryos is 5% CO2 and 20% O2.


2007 ◽  
Vol 19 (1) ◽  
pp. 305
Author(s):  
T. K. Suh ◽  
G.E. Seidel, Jr

During fertilization in mammals, sperm membrane-bound phospholipase C zeta induces breakdown of ooplasmic membrane-bound phosphatidylinositol-4,5-bisphosphate (PIP2), which leads to the production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). The IP3 induces intracellular Ca2+ oscillations ([Ca2+]i), which trigger inactivation of maturation-promoting factor (MPF) and mitogen-activated kinase (MAPK), resulting in decondensation of the sperm head, resumption of meiosis, extrusion of a second polar body, cortical granule exocytosis, formation of pronuclei (PN), and entry into the first cell cycle. In bovine ICSI, injection of a single spermatozoon into an oocyte does not consistently induce [Ca2+]i oscillations, as was observed in IVF, and this may, at least in part, explain the low rates of fertilization and embryo development. Although IP3 has been used as a powerful activator for nuclear transferred zygotes or parthenogenetic oocytes, few studies have evaluated the effect of IP3 injection on normal fertilization and embryo development after ICSI. The objective of this study was to determine the effect of injecting IP3 during bovine ICSI on fertilization and embryo development in vitro. Chemically defined media (CDM) were used throughout (De La Torre-Sanchez et al. 2006 Reprod. Fertil. Dev. 18, 585–596). The injection volume of IP3, which was dissolved in calcium- and magnesium-free PBS, was approximately 0.01 nL, and the total dose for injection along with a spermatozoon was about 250 �M, which was determined by the 2PN formation rate in preliminary experiments. Semen from 3 bulls was used to produce embryos in 5 replicates. Oocytes obtained from slaughterhouse ovaries were matured in vitro in CDM-M for 22–23 h under 5% CO2 in air at 38.5�C, and oocytes with a first polar body were used for ICSI. Motile sperm from frozen–thawed semen were used for sperm injection, with or without IP3 in a 50-�L drop of GMOPS medium, with a piezo-driven pipet of 7–8 �m inner diameter. After ICSI, presumptive zygotes were cultured in CDM-1 for 3 days, and then in CDM-2 for 5 days at 39�C under 5% CO2/5% O2/90% N2. Cleavage and blastocyst development were evaluated at the end of each culture period. Data were subjected to Fisher&apos;s exact test. Cleavage in control and IP3 groups was 36.4 and 50.0%, respectively (P &lt; 0.05). Respective blastocyst rates per oocyte were 5.5 and 13.0% (P &gt; 0.05). This study showed that injection of IP3 during the sperm injection process improved cleavage of bovine oocytes after ICSI.


2004 ◽  
Vol 16 (2) ◽  
pp. 282 ◽  
Author(s):  
Z. Roth ◽  
P.J. Hansen

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that can block the sphingomyelin cell-death pathway by suppressing ceramide-induced apoptosis. The present study was performed to test whether S1P protects oocytes from heat shock during in vitro maturation. Cumulus-oocyte complexes obtained by slicing follicles were placed in maturation medium with or without 50nM S1P and cultured at 38.5°C (CON) or 41°C (41C) for the first 12h of maturation. Incubation during the last 10h of maturation (22-h total maturation time), fertilization, and embryonic development were performed at 38.5°C and 5% (v/v) CO2. Blastocyst development was recorded at 8 days post-insemination (dpi) and activity of group II caspases in 8-day blastocysts was determined using a fluoroprobe, PhiPhiLux-G1D2 (OncoImmunin, Gaithersburg, MD, USA). Data were analysed by least-squares ANOVA with the GLM procedure of SAS. Percentage data were subjected to arcsin transformation before analysis. Exposure of oocytes to thermal stress during the first 12h of maturation reduced cleavage rate (P&lt;0.01) and the number of oocytes developing to the blastocyst stage (P&lt;0.04). There was a temperature x S1P interaction for cleavage rate (P&lt;0.03) because S1P blocked effects of thermal stress on cleavage rate. Without S1P, the percentage of oocytes that cleaved by 3 dpi were 83.6±2.7% and 65.8±2.7% for CON and 41C, respectively. In the presence of S1P, percent cleavage was 86.7±2.7% and 83.9±2.7% for CON and 41C, respectively. There was a trend (P=0.06) for a temperature x S1P interaction for percent oocytes developing to blastocyst stage because S1P blocked effects of heat shock on development. Without S1P, the percentages of oocytes that developed to the blastocyst stage were 28.7±3.0% and 15.2±3.0% for CON and 41C, respectively. In the presence of S1P, percent blastocysts were 24.3±3.4% and 23.9±3.0% for CON and 41C, respectively. When development was expressed as percentage of cleaved embryos, however, there were no effects of temperature, S1P, or temperature x S1P on percent development to the blastocyst stage. Blastocyst caspase activity was not affected by temperature or S1P. In summary, exposure to physiologically relevant thermal stress during the first 12h of maturation has a deleterious effect on oocyte competence and this effect can be reduced by S1P. The fact that heat shock reduced the percentage of oocytes but not the percentage of cleaved embryos that became blastocysts suggests that oocytes that survive effects of heat shock and cleave have normal potential to develop to the blastocyst stage. Moreover, since heat shock did not affect caspase activity, it is likely that blastocysts from heat-shocked oocytes have normal developmental potential, at least as determined by caspase activity. Support: BARD FI-330-2002 and USDA Grants 2002-35203-12664 and 2001-52101-11318.


2021 ◽  
Author(s):  
Ednilson Hilário Lopes-Junior ◽  
Gilbert de Oliveira Silveira ◽  
Camila Banca Guedes ◽  
Gratchela Dutra Rodrigues ◽  
Viviane Sousa Ribeiro ◽  
...  

Abstract Several studies described the effect of human TNF-α on Schistosoma mansoni. It affects the worm’s development, metabolism, egg-laying, changes in the parasite´s gene expression and protein phosphorylation. Data available concerning the influence of hTNF-α on egg-laying are controversial and understanding the mechanism of egg-laying regulation is essential in combating schistosomiasis. We characterized the effects of in vitro treatment of S. mansoni adult worms with different doses of hTNF-α (5, 20 and 40ng/mL) for five days. We explored the effects on the egg-laying rate, glucose, ATP metabolism, mRNA expression levels of lactate dehydrogenase, of glucose transporters and of SmTNFR, the parasite gene for hTNF-α receptor. hTNF-α influenced egg-laying in a time and dose dependent manner: with 40ng/mL, egg-laying increased on day 2 and decreased on days 3 and 4; 20 ng/mL dose, egg-laying decreased on day 3, while at 5ng/mL dose, egg-laying decreased on day 4. The total number of eggs produced was not affected, but the egg-laying dynamic was altered; the median egg-laying time decreased significantly due to treatment. At 5 and 20ng/mL hTNF-alpha, lactate production diminished on days 3 up to 5, while glucose uptake increased on day 5. At 40ng/mL, glucose uptake diminished on days 1 up to 3, while ATP accumulation was detected on day 5. No significant changes in the mRNA expression were detected in all treatments. Crosstalk involving the hTNF-alpha and the parasite signaling play a role in the fine regulation of the worm´s metabolism and physiology and points to new strategies for disease control.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Roberta Ferreira Leite ◽  
Kelly Annes ◽  
Jessica Ispada ◽  
Camila Bruna de Lima ◽  
Érika Cristina dos Santos ◽  
...  

High oxygen levels during in vitro culture (IVC) can induce oxidative stress through accumulation of reactive oxygen species (ROS), negatively affecting embryo development. This study evaluated the effect of different O2 tensions during IVC on bovine blastocyst development and transcriptional status, considering transcription factors that play an essential role during early embryo development. For this purpose, embryos were produced in vitro by conventional protocols and cultured in two different oxygen tensions, physiological (5%) and atmospheric (20%). Expanded blastocysts were subjected to transcript quantitation analysis by RT-qPCR with Biomark™ HD System (Fluidigm, US), using 67 TaqMan assays specific for Bos taurus. Differences were observed in genes related to oxidation-reduction processes, DNA-dependent transcription factors, and factors related to important functional pathways for embryo development. Blastocyst rate was higher in the 5% O2 group and the number of cells was assessed, with the 5% O2 group having a higher number of cells. ROS concentration was evaluated, with a higher ROS presence in the 20% O2 group. Taken together, these results allow us to conclude that IVC of embryos at atmospheric O2 tension affects the expression of important transcription factors involved in multiple cell biology pathways that can affect embryo development, quality, and viability.


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 187-193 ◽  
Author(s):  
So Gun Hong ◽  
Goo Jang ◽  
Hyun Ju Oh ◽  
Ok Jae Koo ◽  
Jung Eun Park ◽  
...  

SummaryBrain-derived neurotrophic factor (BDNF) signalling via tyrosine kinase B receptors may play an important role in ovarian development and function. It has been reported that metformin elevates the activity of Tyrosine kinase receptors and may amplify BDNF signalling. The objective of this study was to investigate the effect of BDNF during in vitro maturation (IVM) and/or in vitro culture (IVC) (Experiment 1), and to evaluate the collaborative effect of BDNF and metformin treatment on the developmental competence of bovine in vitro fertilized (IVF) embryos (Experiment 2). In Experiment 1, BDNF, which was added to our previously established IVM systems, significantly increased the proportions of MII oocytes at both 10 ng/ml (86.7%) and 100 ng/ml (85.4%) compared with the control (64.0%). However, there was no statistically significant difference in blastocyst development between the control or BDNF-supplemented groups. In Experiment 2, in order to investigate the effect of BDNF (10 ng/ml) and/or metformin (10−5 M) per se, TCM-199 without serum and hormones was used as the control IVM medium. The BDNF (48.3%) and BDNF plus metformin (56.5%) significantly enhanced the proportions of MII oocytes compared with the control (34.4%). Although, BDNF or metformin alone had no effect in embryo development, BDNF plus metformin significantly improved early embryo development to the 8–16-cell stage compared with the control (16.5 vs. 5.5%). In conclusion, the combination of BDNF and metformin may have a collaborative effect during the IVM period. These results could further contribute to the establishment of a more efficient bovine in vitro embryo production system.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1272 ◽  
Author(s):  
Muhammad Idrees ◽  
Lianguang Xu ◽  
Seok-Hwan Song ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
...  

This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.


Sign in / Sign up

Export Citation Format

Share Document