Time course and voltage dependence of expressed HERG current compared with native ”rapid" delayed rectifier K current during the cardiac ventricular action potential

1998 ◽  
Vol 436 (6) ◽  
pp. 843-853 ◽  
Author(s):  
J. C. Hancox ◽  
Allan J. Levi ◽  
Harry J. Witchel
2021 ◽  
Vol 14 (8) ◽  
pp. 748
Author(s):  
Péter P. Nánási ◽  
Balázs Horváth ◽  
Fábián Tar ◽  
János Almássy ◽  
Norbert Szentandrássy ◽  
...  

Due to the limited availability of healthy human ventricular tissues, the most suitable animal model has to be applied for electrophysiological and pharmacological studies. This can be best identified by studying the properties of ion currents shaping the action potential in the frequently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to those of human cardiomyocytes. The authors of this article with the experience of three decades of electrophysiological studies, performed in mammalian and human ventricular tissues and isolated cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow components of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and compared. Importantly, many of these measurements were performed using the action potential voltage clamp technique allowing for visualization of the actual current profiles flowing during the ventricular action potential. Densities and shapes of these ion currents, as well as the action potential configuration, were similar in human and canine ventricular cells, except for the density of IK1 and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two species. On the basis of these results, it is concluded that canine ventricular cells represent a reasonably good model for human myocytes for electrophysiological studies, however, it must be borne in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, and moderate differences in the frequency-dependent repolarization patterns can also be anticipated.


1986 ◽  
Vol 88 (6) ◽  
pp. 777-798 ◽  
Author(s):  
J R Hume ◽  
W Giles ◽  
K Robinson ◽  
E F Shibata ◽  
R D Nathan ◽  
...  

Individual myocytes were isolated from bullfrog atrium by enzymatic and mechanical dispersion, and a one-microelectrode voltage clamp was used to record the slow outward K+ currents. In normal [K+]o (2.5 mM), the slow outward current tails reverse between -95 and -100 mV. This finding, and the observed 51-mV shift of Erev/10-fold change in [K+]o, strongly suggest that the "delayed rectifier" in bullfrog atrial cells is a K+ current. This current, IK, plays an important role in initiating repolarization, and it is distinct from the quasi-instantaneous, inwardly rectifying background current, IK. In atrial cells, IK does not exhibit inactivation, and very long depolarizing clamp steps (20 s) can be applied without producing extracellular K+ accumulation. The possibility of [K+]o accumulation contributing to these slow outward current changes was assessed by (a) comparing reversal potentials measured after short (2 s) and very long (15 s) activating prepulses, and (b) studying the kinetics of IK at various holding potentials and after systematically altering [K+]o. In the absence of [K+]o accumulation, the steady state activation curve (n infinity) and fully activated current-voltage (I-V) relation can be obtained directly. The threshold of the n infinity curve is near -50 mV, and it approaches a maximum at +20 mV; the half-activation point is approximately -16 mV. The fully activated I-V curve of IK is approximately linear in the range -40 to +30 mV. Semilog plots of the current tails show that each tail is a single-exponential function, which suggests that only one Hodgkin-Huxley conductance underlies this slow outward current. Quantitative analysis of the time course of onset of IK and of the corresponding envelope of tails demonstrate that the activation variable, n, must be raised to the second power to fit the sigmoid onset accurately. The voltage dependence of the kinetics of IK was studied by recording and curve-fitting activating and deactivating (tail) currents. The resulting 1/tau n curve is U-shaped and somewhat asymmetric; IK exhibits strong voltage dependence in the diastolic range of potentials. Changes in the [Ca2+]o in the superfusing Ringer's, and/or addition of La3+ to block the transmembrane Ca2+ current, show that the time course and magnitude of IK are not significantly modulated by transmembrane Ca2+ movements, i.e., by ICa. These experimentally measured voltage- and time-dependent descriptors of IK strongly suggest an important functional role for IK in atrial tissue: it initiates repolarization and can be an important determinant of rate-induced changes in action potential duration.


1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


1989 ◽  
Vol 256 (5) ◽  
pp. H1450-H1461 ◽  
Author(s):  
R. B. Kleiman ◽  
S. R. Houser

The properties of the inward rectifier K current (IK1) and the delayed rectifier K current (IK) were studied in single feline myocytes isolated from the right ventricle of normal cats and cats with experimentally induced right ventricular hypertrophy (RVH). IK1 demonstrated time-dependent decay during hyperpolarizations and showed inward rectification with a prominent negative-slope region between -30 and -10 mV. Both IK1 and IK was carried primarily by K ions. The activation of IK during depolarizations followed a monoexponential time course, whereas the deactivation of IK tail currents was either mono- or biexponential depending on the repolarization potential. IK showed marked rectification at positive potentials. A comparison of these currents in normal and hypertrophy myocytes revealed that in RVH the magnitude of IK1 is increased, whereas the magnitude of IK is decreased. IK showed steeper rectification, had slower activation, and had more rapid deactivation in RVH. These abnormalities of the IK may contribute to the prolongation of action potential duration, which characterizes pressure-overload cardiac hypertrophy.


2020 ◽  
Vol 25 (43) ◽  
pp. 4606-4612 ◽  
Author(s):  
Yuan-Qi Shi ◽  
Pan Fan ◽  
Guo-Cui Zhang ◽  
Yu-Hao Zhang ◽  
Ming-Zhu Li ◽  
...  

Background: The human ether-a-go-go-related gene (hERG) potassium channel is the rapidly activating component of cardiac delayed rectifier potassium current (IKr), which is a crucial determinant of cardiac repolarization. The reduction of hERG current is commonly believed to cause Long QT Syndrome (LQTs). Probucol, a cholesterol-lowering drug, induces LQTs by inhibiting the expression of the hERG channel. Unfortunately, there is currently no effective therapeutic method to rescue probucol-induced LQTs. Methods: Patch-clamp recording techniques were used to detect the action potential duration (APD) and current of hERG. Western blot was performed to measure the expression levels of proteins. Results: In this study, we demonstrated that 1 μM matrine and oxymatrine could rescue the hERG current and hERG surface expression inhibited by probucol. In addition, matrine and oxymatrine significantly shortened the prolonged action potential duration induced by probucol in neonatal cardiac myocytes. We proposed a novel mechanism underlying the probucol induced decrease in the expression of transcription factor Specificity protein 1 (Sp1), which is an established transactivator of the hERG gene. We also demonstrated that matrine and oxymatrine were able to upregulate Sp1 expression which may be one of the possible mechanisms by which matrine and oxymatrine rescued probucol-induced hERG channel deficiency. Conclusion: Our current results demonstrate that matrine and oxymatrine could rescue probucol-induced hERG deficiency in vitro, which may lead to potentially effective therapeutic drugs for treating acquired LQT2 by probucol in the future.


1995 ◽  
Vol 73 (1) ◽  
pp. 160-171 ◽  
Author(s):  
F. Grolleau ◽  
B. Lapied

1. Whole cell voltage-clamp studies performed in isolated adult neurosecretory cells identified as dorsal unpaired median (DUM) neurons of the terminal abdominal ganglion of the cockroach Periplaneta americana have allowed us to reveal a complex voltage-dependent outward current regulating the pacemaker activity. 2. The global outward current remaining after tetrodotoxin treatment was activated by depolarization above -50 mV, showing steep voltage dependence and outward rectification. 3. We used tail current analysis to determine the ionic selectivity of this outward current. The reversal potentials for two extracellular potassium concentrations (-92.7 and -65.4 mV for 3.1 and 10 mM, respectively) is consistent with the expected equilibrium potential for potassium ions. 4. Both peak and sustained components of the global outward K+ current were reduced by external application of 20 mM tetraethylammonium chloride, 10 nM iberiotoxin, 1 nM charybdotoxin (CTX) and 1 mM cadmium chloride. Subtraction of current recorded in CTX solution from that in control solution revealed an unusual biphasic Ca(2+)-dependent K+ current. The fast transient current resistant to 5 mM 4-aminopyridine (4-AP) is distinguished by its dependence on holding potential and time course from the late sustained current. 5. In addition, two other components of CTX-resistant outward K+ current could be separated by sensitivity to 4-AP, time course, and voltage dependence. Beside a calcium-independent delayed outwardly rectifying current, a 4-AP-sensitive fast transient current resembling the A-current has been also identified. It activates at negative potential (about -65 mV) and unlike the A-current of other neurons, it inactivates rapidly with complex inactivation kinetics. A-like current is half-inactivated at -63.5 mV and half-activated at -35.6 mV. 6. Our findings demonstrate for the first time in DUM neuron cell bodies the existence of multiple potassium currents underlying the spontaneous electrical activity. Their identification and characterization represent a fundamental step in further understanding the pacemaker properties of these insect neurosecretory cells.


2003 ◽  
Vol 549 (3) ◽  
pp. 667-672 ◽  
Author(s):  
J. M. Ridley ◽  
J. T. Milnes ◽  
Y. H. Zhang ◽  
H. J. Witchel ◽  
J. C. Hancox

2008 ◽  
Vol 96 (1-3) ◽  
pp. 357-376 ◽  
Author(s):  
Martin Fink ◽  
Denis Noble ◽  
Laszlo Virag ◽  
Andras Varro ◽  
Wayne R. Giles

2012 ◽  
Vol 303 (8) ◽  
pp. C825-C833 ◽  
Author(s):  
Robert Wondergem ◽  
Bridget M. Graves ◽  
Chuanfu Li ◽  
David L. Williams

Sepsis has deleterious effects on cardiac function including reduced contractility. We have shown previously that lipopolysaccharides (LPS) directly affect HL-1 cardiac myocytes by inhibiting Ca2+ regulation and by impairing pacemaker “funny” current, If. We now explore further cellular mechanisms whereby LPS inhibits excitability in HL-1 cells. LPS (1 μg/ml) derived from Salmonella enteritidis decreased rate of firing of spontaneous action potentials in HL-1 cells, and it increased their pacemaker potential durations and decreased their rates of depolarization, all measured by whole cell current clamp. LPS also increased action potential durations and decreased their amplitude in cells paced at 1 Hz with 0.1 nA, and 20 min were necessary for maximal effect. LPS decreased the amplitude of a rapidly inactivating inward current attributed to Na+ and of an outward current attributed to K+; both were measured by whole cell voltage clamp. The K+ currents displayed a resurgent outward tail current, which is characteristic of the rapid delayed-rectifier K+ current, IKr. LPS accordingly reduced outward currents measured with pipette Cs+ substituted for K+ to isolate IKr. E-4031 (1 μM) markedly inhibited IKr in HL-1 cells and also increased action potential duration; however, the direct effects of E-4031 occurred minutes faster than the slow effects of LPS. We conclude that LPS increases action potential duration in HL-1 mouse cardiomyocytes by inhibition of IKr and decreases their rate of firing by inhibition of INa. This protracted time course points toward an intermediary metabolic event, which either decreases available mouse ether-a-go-go (mERG) and Na+ channels or potentiates their inactivation.


Sign in / Sign up

Export Citation Format

Share Document