Using biotechnological approaches to develop crop resistance to root parasitic weeds

Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Radi Aly ◽  
Maor Matzrafi ◽  
Vinay Kumar Bari
Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1184
Author(s):  
Mónica Fernández-Aparicio ◽  
Philippe Delavault ◽  
Michael P. Timko

Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, when parasitic plants become established in low biodiversified agroecosystems, their persistence causes tremendous yield losses rendering agricultural lands uncultivable. The control of parasitic weeds is challenging because there are few sources of crop resistance and it is difficult to apply controlling methods selective enough to kill the weeds without damaging the crop to which they are physically and biochemically attached. The management of parasitic weeds is also hindered by their high fecundity, dispersal efficiency, persistent seedbank, and rapid responses to changes in agricultural practices, which allow them to adapt to new hosts and manifest increased aggressiveness against new resistant cultivars. New understanding of the physiological and molecular mechanisms behind the processes of germination and haustorium development, and behind the crop resistant response, in addition to the discovery of new targets for herbicides and bioherbicides will guide researchers on the design of modern agricultural strategies for more effective, durable, and health compatible parasitic weed control.


1994 ◽  
Vol 48 (3) ◽  
pp. 332-332 ◽  
Author(s):  
Lytton J. Musselman
Keyword(s):  

1991 ◽  
Vol 10 (1) ◽  
pp. 6-22 ◽  
Author(s):  
C. Parker
Keyword(s):  

2007 ◽  
Vol 26 (3) ◽  
pp. 246-254 ◽  
Author(s):  
J. Sauerborn ◽  
D. Müller-Stöver ◽  
J. Hershenhorn

2019 ◽  
Vol 50 (2) ◽  
pp. 151-163 ◽  
Author(s):  
Simon Akahoua N'cho ◽  
Monique Mourits ◽  
Jonne Rodenburg ◽  
Alfons Oude Lansink

2021 ◽  
Author(s):  
Venera S. Kamburova ◽  
Ilkhom B. Salakhutdinov ◽  
Shukhrat E. Shermatov ◽  
Ibrokhim Y. Abdurakhmonov

The main task of plant breeding is creating of high-yield, resistant to biotic and abiotic stresses crop varieties with high product quality. The using of traditional breeding methods is limited by the duration of the new crop varieties creation with the required agronomic traits. This depends not only on the duration of growing season and reaching of mature stage of plants (especially the long-period growth plants, e.g. trees), as well as is associated with applying of multiple stages of crossing, selection and testing in breeding process. In addition, conventional methods of chemical and physical mutagenesis do not allow targeting effect to genome. However, the introduction of modern DNA-technology methods, such as genome editing, has opened in a new era in plant breeding. These methods allow to carry out precise and efficient targeted genome modifications, significantly reducing the time required to get plants with desirable features to create new crop varieties in perspective. This review provides the knowledge about application of genome editing methods to increase crop yields and product quality, as well as crop resistance to biotic and abiotic stresses. In addition, future prospects for integrating these technologies into crop breeding strategies are also discussed.


2021 ◽  
Author(s):  
Niccolò Bassetti ◽  
Lotte Caarls ◽  
Gabriella Bukovinszkine’Kiss ◽  
Mohamed El-Soda ◽  
Jeroen van Veen ◽  
...  

Abstract Background Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. Results A germplasm screening of B. rapa 56 accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 contains also LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. Conclusions This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.


Sign in / Sign up

Export Citation Format

Share Document