scholarly journals Using of Genome Editing Methods in Plant Breeding

2021 ◽  
Author(s):  
Venera S. Kamburova ◽  
Ilkhom B. Salakhutdinov ◽  
Shukhrat E. Shermatov ◽  
Ibrokhim Y. Abdurakhmonov

The main task of plant breeding is creating of high-yield, resistant to biotic and abiotic stresses crop varieties with high product quality. The using of traditional breeding methods is limited by the duration of the new crop varieties creation with the required agronomic traits. This depends not only on the duration of growing season and reaching of mature stage of plants (especially the long-period growth plants, e.g. trees), as well as is associated with applying of multiple stages of crossing, selection and testing in breeding process. In addition, conventional methods of chemical and physical mutagenesis do not allow targeting effect to genome. However, the introduction of modern DNA-technology methods, such as genome editing, has opened in a new era in plant breeding. These methods allow to carry out precise and efficient targeted genome modifications, significantly reducing the time required to get plants with desirable features to create new crop varieties in perspective. This review provides the knowledge about application of genome editing methods to increase crop yields and product quality, as well as crop resistance to biotic and abiotic stresses. In addition, future prospects for integrating these technologies into crop breeding strategies are also discussed.

2021 ◽  
Vol 17 ◽  
Author(s):  
John Caradus ◽  
Joseph Bouton ◽  
Charles Brummer ◽  
Marty Faville ◽  
Richard George ◽  
...  

Plant breeding has had, and continues to have, an important role in providing farmers with resilient pastures. Early breeding relied on improvement of ecotype populations and this was accelerated by crossing with selected introduced germplasm. The primary traits under selection have targeted speed of establishment, total and/or seasonal dry matter (DM) yield, nutritive value or feed quality, flowering time and reduced aftermath heading, disease resistance, persistence and seed yield. Continued improvement through plant breeding to meet environmental concerns and tolerances to both biotic and abiotic stresses will be achieved through ongoing plant introductions, exploiting heterosis, speed breeding, genomic selection, improvements in phenotyping, metabolomics, improved compatibility with beneficial microbes, and potentially the use of transgenic and gene editing technologies.


2019 ◽  
Vol 33 (6) ◽  
pp. 815-822 ◽  
Author(s):  
Rouzbeh Zangoueinejad ◽  
Mohammad Taghi Alebrahim ◽  
Te Ming Tseng

AbstractTomato is injured by low doses of 2,4-D, dicamba, quinclorac, and glyphosate. New crop varieties resistant to 2,4-D and dicamba are likely to increase use of these herbicides and may increase drift problems. There is a diverse germplasm of tomato available that includes wild relatives known to be tolerant to numerous biotic and abiotic stresses. A greenhouse and field study was conducted to investigate auxin tolerance in three wild tomato accessions (TOM199, TOM198, and TOM300) and compare them with two commercial tomato cultivars (‘Money Maker’ and ‘Better Boy’). Auxin herbicides, which included 2,4-D, dicamba, and quinclorac, were applied at doses of 11, 3, and 39 g ae ha−1, respectively. Visible injury ratings of each accession for each herbicide treatment were recorded at 7, 14, 21, and 28 d after treatment (DAT) on a 0% to 100% scale. Results indicate that all three wild tomato accessions exhibited less than 15% injury compared with 100% injury for two commercial cultivars after application of dicamba. The three wild accessions (TOM199, TOM198, and TOM300) did not show any significant reduction in plant height compared with nontreated plants. At 28 DAT, plant heights of TOM199, TOM198, and TOM300 were 25, 25, and 28 cm when treated with dicamba and 31, 30, and 31 cm nontreated, respectively. Based on these results, the identified lines can serve as a genetic resource for developing herbicide-tolerant tomato, thus minimizing or eliminating the negative impacts of drift from nonlabeled herbicides tested in this project.


Author(s):  
A.M. Tyslenko ◽  
◽  
D.V. Zuev ◽  
S.E. Skatova ◽  
◽  
...  

The results of spring triticale breeding in the Upper Volga Federal Agrarian Scientific Center in cooperation with scientific institutions of Russia, Belarus and Kazakhstan are presented. Collaboration was based on an environmental principle. The main task was creation of varieties tolerant to biotic and abiotic stresses with potential feed grain yield of 5.0–6.5 t/ha on low fertile soils and 8.0–-9.0 t/ha on cultivated by intensive technologies. During 2003–2019 high-yielding mid-early spring triticale varieties ‘Grebeshok’, ‘Amigo’, ‘Amore’, ‘Rovnya’, ‘Rossika’; mid-season ‘Normann’, ‘Carmen’, ‘Dobroe’, ‘Zaozerye’, Dauren were created and approved for use in various regions of the Russian Federation. Cultivation of these varieties contributes to an increase and stabilization of feed grain harvests, an improvement in the ecological balance of the environment, an introduction of temporarily uncultivated lands into agricultural circulation, and an increase in livestock productivity.


Author(s):  
Alan H. Schulman

Plant breeding is facing simultaneous challenges from a changing climate, increasing prices for nonrenewable inputs, and evolving consumer demands. Biotic and abiotic stresses are increasing with climate change; sustainable and stable production will require higher yields with lower inputs; consumers expect health-promoting, safe and traceable food. To meet these challenges, breeding requires more efficient tools with which to unlock and apply existing genetic diversity, to understand the relationship between genotype and phenotype, and to apply the approaches of biotechnology where appropriate. The growing genomics toolbox, based on genome projects for crop plants, offers much promise for acceleration of plant breeding. Here, these approaches will be explored with an emphasis on barley and wheat, which are the key cereal crops of Europe.


2007 ◽  
Vol 13 (4) ◽  
Author(s):  
E. Szarka ◽  
E. Sárdi ◽  
G. Csilléry ◽  
J. Szarka

Plant breeding for resistance, namely building specific resistance genes into cultivated plants to ensure resistance against certain pathogen species, is a several-decade-long practice. While looking for purposes of failures appearing during the cultivation of varieties created in this way, a plant feature that ensures non-specific reactions against effects which evoke biotic stress attracted our attention. We named this plant defense form the general defense reaction. The general defense reaction is a fundamental attribute of the plant kingdom, fulfils the role of plant immune system and manifests itself in cell enlargement and cell division. Plants with a high level general defense reaction endure abiotic stresses as well. In studying the biochemical background of the interaction of the general defense reaction and transmethylation, we found that transmethylation has important role in warding off both biotic and abiotic stresses. According to our observations, plants possessing high level general defense system are suitable for thorough examination of the process and plant physiological role of transmethylation. Biochemical studies also strengthened our observation, which has been taken on the basis of phenotype, that the general defense system can not be ignored during future plant breeding.


2021 ◽  
Vol 28 ◽  
Author(s):  
Temoor Ahmed ◽  
Muhammad Shahid ◽  
Muhammad Noman ◽  
Sher Muhammad ◽  
Muhammad Tahir ul Qamar ◽  
...  

Abstract: Abiotic stresses in plants such as salinity, drought, heavy metal toxicity, heat, and nutrients limitations significantly reduce agricultural production worldwide. The genome editing techniques such as transcriptional activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) have been used for genome manipulations in plants. However, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technique has recently emerged as a promising tool for genome editing in plants to acquire desirable traits. The CRISPR/Cas9 system has a great potential to develop crop varieties with improved tolerance against abiotic stresses. This review is centered on the biology and potential application of the CRISPR/Cas9 system to improve abiotic stress tolerance in plants. Furthermore, this review highlighted the recent advancements of CRISPR/Cas9-mediated genome editing for sustainable agriculture.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chin Jian Yang ◽  
Joanne Russell ◽  
Luke Ramsay ◽  
William Thomas ◽  
Wayne Powell ◽  
...  

AbstractDistinctness, Uniformity and Stability (DUS) is an intellectual property system introduced in 1961 by the International Union for the Protection of New Varieties of Plants (UPOV) for safeguarding the investment and rewarding innovation in developing new plant varieties. Despite the rapid advancement in our understanding of crop biology over the past 60 years, the DUS system has changed little and is still largely dependent upon a set of morphological traits for testing candidate varieties. As the demand for more plant varieties increases, the barriers to registration of new varieties become more acute and thus require urgent review to the system. To highlight the challenges and remedies in the current system, we evaluated a comprehensive panel of 805 UK barley varieties that span the entire history of DUS testing. Our findings reveal the system deficiencies such as inconsistencies in DUS traits across environments, limitations in DUS trait combinatorial space, and inadequacies in currently available DUS markers. We advocate the concept of genomic DUS and provide evidence for a shift towards a robust genomics-enabled registration system for new crop varieties.


Sign in / Sign up

Export Citation Format

Share Document